You are here: TWiki> Cimec Web>DynamicLinpack (2002-05-23, MarioStorti)
C $Id: DynamicLinpack.txt,v 1.1 2002/05/23 13:09:04 MarioStorti Exp apache $
		program lbn
		implicit real*8 (a-h,o-z) 
		parameter (lmax=10000000)
		dimension s(lmax)
		iend=1
		idebug=0
c	  
		n = 20
 100  write(*,*) 'n: ',n
		call aloca(ia ,	(2*n+1)*2*n ,iend,lmax,'a'	 ,idebug)
		call aloca(ib ,	2*n			,iend,lmax,'n'	 ,idebug)
		call aloca(ix ,	2*n			,iend,lmax,'x'	 ,idebug)
		call aloca(iacpy, (2*n+1)*2*n ,iend,lmax,'acpy' ,idebug)
		call aloca(ibcpy, 2*n			,iend,lmax,'bcpy' ,idebug)
		call aloca(iivpt, n			  ,iend,lmax,'ivpt' ,idebug)
		call doit(n,s(ia),s(ib),s(ix),s(iacpy), s(ibcpy),s(iivpt))
c	  free memory
		iend=1
		n = 1.3*n
		if (n.lt.1000) goto 100
		stop
		end
c
		subroutine doit(n,a,b,x,acpy,bcpy,ivpt)
		integer ipvt(2*n)
		double precision a(2*n+1,2*n),b(2*n),x(2*n),
	  *	  acpy(2*n+1,2*n),bcpy(2*n),ttot(3)
		double precision time(8,6),cray,ops,total,norma,normx
		double precision resid,residn,eps,epslon
		lda = 2*n+1
c
c	  this program was updated on 10/12/92 to correct a
c	  problem with the random number generator. The previous
c	  random number generator had a short period and produced
c	  singular matrices occasionally.
c
		cray = .056
		ops = (2.0d0*dfloat(n)**3)/3.0d0 + 2.0d0*dfloat(n)**2
c
		call matgen(acpy,lda,n,bcpy,norma)
c->			open(7,name='lb100dl.out')
c->			do j=1,n
c->				do i=1,n
c->					write (7,*) acpy(i,j)
c->				enddo
c->			enddo
c->			do i=1,n
c->				write(7,*) bcpy(i)
c->			enddo
		niter = 200*100**3/n**3
		if (niter.lt.5) niter=5
		write(*,*) 'niter: ', niter
		do icptim=1,3
			t1 = second()
			do k=1,niter
				do jcp=icptim,1,-1
					do kk=1,n
						do ll=1,n
							a(kk,ll) = k*jcp*acpy(kk,ll)
						enddo
						b(kk)=k*jcp*bcpy(kk)
					enddo
				enddo
				call dgefa(a,lda,n,ipvt,info)
				if (info.ne.0) then
					write(*,*) 'On iter ',k,' dgefa returned info= ',info
					stop
				endif
				call dgesl(a,lda,n,ipvt,b,0)
			enddo
			ttot(icptim)=second()-t1
			write(*,*) 'On iter ',icptim,' ttot: ',ttot(icptim)
		enddo
		t0 = 2*ttot(1)-ttot(2)
		t0_3 = 1.5*ttot(1)-0.5*ttot(3)
		dev = abs(t0_3-t0)/t0
		if (dev.gt.0.1) then
			write(*,*) 'warning: max dev. exceeded: t0= ',t0,' t0_3= ',
	  *		  t0_3,' relative dev= ',dev
		endif
		write(*,*) 'Elapsed: ',t0,' per iter: ',t0/niter,
	  *	  ' rate: ',niter*ops/(1e6*t0),' [mflops]'
c		Verify
		maxerr=0.
		do k=1,n
			err = abs(b(k)-1.)
			if (err.gt.maxerr) maxerr = err
		enddo
		if (err.gt.1e-10) write (*,*) 'warning: max err: ',maxerr
c->			do i=1,n
c->				write (7,*) b(i)
c->			enddo
c->			close(7)
		end
		subroutine matgen(a,lda,n,b,norma)
		integer lda,n,init(4),i,j
		double precision a(lda,1),b(1),norma,ran
		external ran
c
		init(1) = 1
		init(2) = 2
		init(3) = 3
		init(4) = 1325
		norma = 0.0
		do 30 j = 1,n
			do 20 i = 1,n
				a(i,j) = ran(init) - .5
				norma = dmax1(dabs(a(i,j)), norma)
	20	 continue
	30 continue
		do 35 i = 1,n
			 b(i) = 0.0
	35 continue
		do 50 j = 1,n
			do 40 i = 1,n
				b(i) = b(i) + a(i,j)
	40	 continue
	50 continue
		return
		end
		subroutine dgefa(a,lda,n,ipvt,info)
		integer lda,n,ipvt(1),info
		double precision a(lda,1)
c
c	  dgefa factors a double precision matrix by gaussian elimination.
c
c	  dgefa is usually called by dgeco, but it can be called
c	  directly with a saving in time if  rcond  is not needed.
c	  (time for dgeco) = (1 + 9/n)*(time for dgefa) .
c
c	  on entry
c
c		  a		 double precision(lda, n)
c					 the matrix to be factored.
c
c		  lda	  integer
c					 the leading dimension of the array  a .
c
c		  n		 integer
c					 the order of the matrix  a .
c
c	  on return
c
c		  a		 an upper triangular matrix and the multipliers
c					 which were used to obtain it.
c					 the factorization can be written  a = l*u  where
c					 l  is a product of permutation and unit lower
c					 triangular matrices and  u  is upper triangular.
c
c		  ipvt	 integer(n)
c					 an integer vector of pivot indices.
c
c		  info	 integer
c					 = 0  normal value.
c					 = k  if  u(k,k) .eq. 0.0 .  this is not an error
c							condition for this subroutine, but it does
c							indicate that dgesl or dgedi will divide by zero
c							if called.  use  rcond  in dgeco for a reliable
c							indication of singularity.
c
c	  linpack. this version dated 08/14/78 .
c	  cleve moler, university of new mexico, argonne national lab.
c
c	  subroutines and functions
c
c	  blas daxpy,dscal,idamax
c
c	  internal variables
c
		double precision t
		integer idamax,j,k,kp1,l,nm1
c
c
c	  gaussian elimination with partial pivoting
c
		info = 0
		nm1 = n - 1
		if (nm1 .lt. 1) go to 70
		do 60 k = 1, nm1
			kp1 = k + 1
c
c		  find l = pivot index
c
			l = idamax(n-k+1,a(k,k),1) + k - 1
			ipvt(k) = l
c
c		  zero pivot implies this column already triangularized
c
			if (a(l,k) .eq. 0.0d0) go to 40
c
c			  interchange if necessary
c
				if (l .eq. k) go to 10
					t = a(l,k)
					a(l,k) = a(k,k)
					a(k,k) = t
	10		 continue
c
c			  compute multipliers
c
				t = -1.0d0/a(k,k)
				call dscal(n-k,t,a(k+1,k),1)
c
c			  row elimination with column indexing
c
				do 30 j = kp1, n
					t = a(l,j)
					if (l .eq. k) go to 20
						a(l,j) = a(k,j)
						a(k,j) = t
	20			 continue
					call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
	30		 continue
			go to 50
	40	 continue
				info = k
	50	 continue
	60 continue
	70 continue
		ipvt(n) = n
		if (a(n,n) .eq. 0.0d0) info = n
		return
		end
		subroutine dgesl(a,lda,n,ipvt,b,job)
		integer lda,n,ipvt(1),job
		double precision a(lda,1),b(1)
c
c	  dgesl solves the double precision system
c	  a * x = b  or  trans(a) * x = b
c	  using the factors computed by dgeco or dgefa.
c
c	  on entry
c
c		  a		 double precision(lda, n)
c					 the output from dgeco or dgefa.
c
c		  lda	  integer
c					 the leading dimension of the array  a .
c
c		  n		 integer
c					 the order of the matrix  a .
c
c		  ipvt	 integer(n)
c					 the pivot vector from dgeco or dgefa.
c
c		  b		 double precision(n)
c					 the right hand side vector.
c
c		  job	  integer
c					 = 0			to solve  a*x = b ,
c					 = nonzero	to solve  trans(a)*x = b  where
c									 trans(a)  is the transpose.
c
c	  on return
c
c		  b		 the solution vector  x .
c
c	  error condition
c
c		  a division by zero will occur if the input factor contains a
c		  zero on the diagonal.  technically this indicates singularity
c		  but it is often caused by improper arguments or improper
c		  setting of lda .  it will not occur if the subroutines are
c		  called correctly and if dgeco has set rcond .gt. 0.0
c		  or dgefa has set info .eq. 0 .
c
c	  to compute  inverse(a) * c  where  c  is a matrix
c	  with  p  columns
c			  call dgeco(a,lda,n,ipvt,rcond,z)
c			  if (rcond is too small) go to ...
c			  do 10 j = 1, p
c				  call dgesl(a,lda,n,ipvt,c(1,j),0)
c		  10 continue
c
c	  linpack. this version dated 08/14/78 .
c	  cleve moler, university of new mexico, argonne national lab.
c
c	  subroutines and functions
c
c	  blas daxpy,ddot
c
c	  internal variables
c
		double precision ddot,t
		integer k,kb,l,nm1
c
		nm1 = n - 1
		if (job .ne. 0) go to 50
c
c		  job = 0 , solve  a * x = b
c		  first solve  l*y = b
c
			if (nm1 .lt. 1) go to 30
			do 20 k = 1, nm1
				l = ipvt(k)
				t = b(l)
				if (l .eq. k) go to 10
					b(l) = b(k)
					b(k) = t
	10		 continue
				call daxpy(n-k,t,a(k+1,k),1,b(k+1),1)
	20	 continue
	30	 continue
c
c		  now solve  u*x = y
c
			do 40 kb = 1, n
				k = n + 1 - kb
				b(k) = b(k)/a(k,k)
				t = -b(k)
				call daxpy(k-1,t,a(1,k),1,b(1),1)
	40	 continue
		go to 100
	50 continue
c
c		  job = nonzero, solve  trans(a) * x = b
c		  first solve  trans(u)*y = b
c
			do 60 k = 1, n
				t = ddot(k-1,a(1,k),1,b(1),1)
				b(k) = (b(k) - t)/a(k,k)
	60	 continue
c
c		  now solve trans(l)*x = y
c
			if (nm1 .lt. 1) go to 90
			do 80 kb = 1, nm1
				k = n - kb
				b(k) = b(k) + ddot(n-k,a(k+1,k),1,b(k+1),1)
				l = ipvt(k)
				if (l .eq. k) go to 70
					t = b(l)
					b(l) = b(k)
					b(k) = t
	70		 continue
	80	 continue
	90	 continue
  100 continue
		return
		end
		subroutine daxpy(n,da,dx,incx,dy,incy)
c
c	  constant times a vector plus a vector.
c	  jack dongarra, linpack, 3/11/78.
c
		double precision dx(1),dy(1),da
		integer i,incx,incy,ix,iy,n
c
		if(n.le.0)return
		if (da .eq. 0.0d0) return
		if(incx.eq.1.and.incy.eq.1)go to 20
c
c		  code for unequal increments or equal increments
c			 not equal to 1
c
		ix = 1
		iy = 1
		if(incx.lt.0)ix = (-n+1)*incx + 1
		if(incy.lt.0)iy = (-n+1)*incy + 1
		do 10 i = 1,n
		  dy(iy) = dy(iy) + da*dx(ix)
		  ix = ix + incx
		  iy = iy + incy
	10 continue
		return
c
c		  code for both increments equal to 1
c
	20 continue
		do 30 i = 1,n
		  dy(i) = dy(i) + da*dx(i)
	30 continue
		return
		end
		double precision function ddot(n,dx,incx,dy,incy)
c
c	  forms the dot product of two vectors.
c	  jack dongarra, linpack, 3/11/78.
c
		double precision dx(1),dy(1),dtemp
		integer i,incx,incy,ix,iy,n
c
		ddot = 0.0d0
		dtemp = 0.0d0
		if(n.le.0)return
		if(incx.eq.1.and.incy.eq.1)go to 20
c
c		  code for unequal increments or equal increments
c			 not equal to 1
c
		ix = 1
		iy = 1
		if(incx.lt.0)ix = (-n+1)*incx + 1
		if(incy.lt.0)iy = (-n+1)*incy + 1
		do 10 i = 1,n
		  dtemp = dtemp + dx(ix)*dy(iy)
		  ix = ix + incx
		  iy = iy + incy
	10 continue
		ddot = dtemp
		return
c
c		  code for both increments equal to 1
c
	20 continue
		do 30 i = 1,n
		  dtemp = dtemp + dx(i)*dy(i)
	30 continue
		ddot = dtemp
		return
		end
		subroutine  dscal(n,da,dx,incx)
c
c	  scales a vector by a constant.
c	  jack dongarra, linpack, 3/11/78.
c
		double precision da,dx(1)
		integer i,incx,n,nincx
c
		if(n.le.0)return
		if(incx.eq.1)go to 20
c
c		  code for increment not equal to 1
c
		nincx = n*incx
		do 10 i = 1,nincx,incx
		  dx(i) = da*dx(i)
	10 continue
		return
c
c		  code for increment equal to 1
c
	20 continue
		do 30 i = 1,n
		  dx(i) = da*dx(i)
	30 continue
		return
		end
		integer function idamax(n,dx,incx)
c
c	  finds the index of element having max. dabsolute value.
c	  jack dongarra, linpack, 3/11/78.
c
		double precision dx(1),dmax
		integer i,incx,ix,n
c
		idamax = 0
		if( n .lt. 1 ) return
		idamax = 1
		if(n.eq.1)return
		if(incx.eq.1)go to 20
c
c		  code for increment not equal to 1
c
		ix = 1
		dmax = dabs(dx(1))
		ix = ix + incx
		do 10 i = 2,n
			if(dabs(dx(ix)).le.dmax) go to 5
			idamax = i
			dmax = dabs(dx(ix))
	 5	 ix = ix + incx
	10 continue
		return
c
c		  code for increment equal to 1
c
	20 dmax = dabs(dx(1))
		do 30 i = 2,n
			if(dabs(dx(i)).le.dmax) go to 30
			idamax = i
			dmax = dabs(dx(i))
	30 continue
		return
		end
		double precision function epslon (x)
		double precision x
c
c	  estimate unit roundoff in quantities of size x.
c
		double precision a,b,c,eps
c
c	  this program should function properly on all systems
c	  satisfying the following two assumptions,
c		  1.  the base used in representing dfloating point
c				numbers is not a power of three.
c		  2.  the quantity  a  in statement 10 is represented to 
c				the accuracy used in dfloating point variables
c				that are stored in memory.
c	  the statement number 10 and the go to 10 are intended to
c	  force optimizing compilers to generate code satisfying 
c	  assumption 2.
c	  under these assumptions, it should be true that,
c				a  is not exactly equal to four-thirds,
c				b  has a zero for its last bit or digit,
c				c  is not exactly equal to one,
c				eps  measures the separation of 1.0 from
c					  the next larger dfloating point number.
c	  the developers of eispack would appreciate being informed
c	  about any systems where these assumptions do not hold.
c
c	  *****************************************************************
c	  this routine is one of the auxiliary routines used by eispack iii
c	  to avoid machine dependencies.
c	  *****************************************************************
c
c	  this version dated 4/6/83.
c
		a = 4.0d0/3.0d0
	10 b = a - 1.0d0
		c = b + b + b
		eps = dabs(c-1.0d0)
		if (eps .eq. 0.0d0) go to 10
		epslon = eps*dabs(x)
		return
		end
		subroutine dmxpy (n1, y, n2, ldm, x, m)
		double precision y(*), x(*), m(ldm,*)
c
c	purpose:
c	  multiply matrix m times vector x and add the result to vector y.
c
c	parameters:
c
c	  n1 integer, number of elements in vector y, and number of rows in
c			matrix m
c
c	  y double precision(n1), vector of length n1 to which is added 
c			the product m*x
c
c	  n2 integer, number of elements in vector x, and number of columns
c			in matrix m
c
c	  ldm integer, leading dimension of array m
c
c	  x double precision(n2), vector of length n2
c
c	  m double precision(ldm,n2), matrix of n1 rows and n2 columns
c
c ----------------------------------------------------------------------
c
c	cleanup odd vector
c
		j = mod(n2,2)
		if (j .ge. 1) then
			do 10 i = 1, n1
				y(i) = (y(i)) + x(j)*m(i,j)
	10	 continue
		endif
c
c	cleanup odd group of two vectors
c
		j = mod(n2,4)
		if (j .ge. 2) then
			do 20 i = 1, n1
				y(i) = ( (y(i))
	  $				 + x(j-1)*m(i,j-1)) + x(j)*m(i,j)
	20	 continue
		endif
c
c	cleanup odd group of four vectors
c
		j = mod(n2,8)
		if (j .ge. 4) then
			do 30 i = 1, n1
				y(i) = ((( (y(i))
	  $				 + x(j-3)*m(i,j-3)) + x(j-2)*m(i,j-2))
	  $				 + x(j-1)*m(i,j-1)) + x(j)  *m(i,j)
	30	 continue
		endif
c
c	cleanup odd group of eight vectors
c
		j = mod(n2,16)
		if (j .ge. 8) then
			do 40 i = 1, n1
				y(i) = ((((((( (y(i))
	  $				 + x(j-7)*m(i,j-7)) + x(j-6)*m(i,j-6))
	  $				 + x(j-5)*m(i,j-5)) + x(j-4)*m(i,j-4))
	  $				 + x(j-3)*m(i,j-3)) + x(j-2)*m(i,j-2))
	  $				 + x(j-1)*m(i,j-1)) + x(j)  *m(i,j)
	40	 continue
		endif
c
c	main loop - groups of sixteen vectors
c
		jmin = j+16
		do 60 j = jmin, n2, 16
			do 50 i = 1, n1
				y(i) = ((((((((((((((( (y(i))
	  $				 + x(j-15)*m(i,j-15)) + x(j-14)*m(i,j-14))
	  $				 + x(j-13)*m(i,j-13)) + x(j-12)*m(i,j-12))
	  $				 + x(j-11)*m(i,j-11)) + x(j-10)*m(i,j-10))
	  $				 + x(j- 9)*m(i,j- 9)) + x(j- 8)*m(i,j- 8))
	  $				 + x(j- 7)*m(i,j- 7)) + x(j- 6)*m(i,j- 6))
	  $				 + x(j- 5)*m(i,j- 5)) + x(j- 4)*m(i,j- 4))
	  $				 + x(j- 3)*m(i,j- 3)) + x(j- 2)*m(i,j- 2))
	  $				 + x(j- 1)*m(i,j- 1)) + x(j)	*m(i,j)
	50	 continue
	60 continue
		return
		end
		DOUBLE PRECISION FUNCTION RAN( ISEED )
*
*	  modified from the LAPACK auxiliary routine 10/12/92 JD
*  -- LAPACK auxiliary routine (version 1.0) --
*	  Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*	  Courant Institute, Argonne National Lab, and Rice University
*	  February 29, 1992
*
*	  .. Array Arguments ..
		INTEGER				ISEED( 4 )
*	  ..
*
*  Purpose
*  =======
*
*  DLARAN returns a random real number from a uniform (0,1)
*  distribution.
*
*  Arguments
*  =========
*
*  ISEED	(input/output) INTEGER array, dimension (4)
*			 On entry, the seed of the random number generator; the array
*			 elements must be between 0 and 4095, and ISEED(4) must be
*			 odd.
*			 On exit, the seed is updated.
*
*  Further Details
*  ===============
*
*  This routine uses a multiplicative congruential method with modulus
*  2**48 and multiplier 33952834046453 (see G.S.Fishman,
*  'Multiplicative congruential random number generators with modulus
*  2**b: an exhaustive analysis for b = 32 and a partial analysis for
*  b = 48', Math. Comp. 189, pp 331-344, 1990).
*
*  48-bit integers are stored in 4 integer array elements with 12 bits
*  per element. Hence the routine is portable across machines with
*  integers of 32 bits or more.
*
*	  .. Parameters ..
		INTEGER				M1, M2, M3, M4
		PARAMETER			 ( M1 = 494, M2 = 322, M3 = 2508, M4 = 2549 )
		DOUBLE PRECISION	ONE
		PARAMETER			 ( ONE = 1.0D+0 )
		INTEGER				IPW2
		DOUBLE PRECISION	R
		PARAMETER			 ( IPW2 = 4096, R = ONE / IPW2 )
*	  ..
*	  .. Local Scalars ..
		INTEGER				IT1, IT2, IT3, IT4
*	  ..
*	  .. Intrinsic Functions ..
		INTRINSIC			 DBLE, MOD
*	  ..
*	  .. Executable Statements ..
*
*	  multiply the seed by the multiplier modulo 2**48
*
		IT4 = ISEED( 4 )*M4
		IT3 = IT4 / IPW2
		IT4 = IT4 - IPW2*IT3
		IT3 = IT3 + ISEED( 3 )*M4 + ISEED( 4 )*M3
		IT2 = IT3 / IPW2
		IT3 = IT3 - IPW2*IT2
		IT2 = IT2 + ISEED( 2 )*M4 + ISEED( 3 )*M3 + ISEED( 4 )*M2
		IT1 = IT2 / IPW2
		IT2 = IT2 - IPW2*IT1
		IT1 = IT1 + ISEED( 1 )*M4 + ISEED( 2 )*M3 + ISEED( 3 )*M2 +
	  $		ISEED( 4 )*M1
		IT1 = MOD( IT1, IPW2 )
*
*	  return updated seed
*
		ISEED( 1 ) = IT1
		ISEED( 2 ) = IT2
		ISEED( 3 ) = IT3
		ISEED( 4 ) = IT4
*
*	  convert 48-bit integer to a real number in the interval (0,1)
*
		RAN = R*( DBLE( IT1 )+R*( DBLE( IT2 )+R*( DBLE( IT3 )+R*
	  $			( DBLE( IT4 ) ) ) ) )
		RETURN
*
*	  End of RAN
*
		END
c====<*>====<*>====<*>====<*>====<*>====<*>====<*>====<*>====<*>
		subroutine aloca(ip,len,iend,nw,name,idebug)
		implicit real*8 (a-h,o-z) 
		character*(*) name
		if(len.eq.0)
	  * stop ' 1 aloca: longeur de memoire demande nulle'
		ip=iend																			  
		iendd=ip+len																		
		if(iendd.gt.nw) then															 
			  write(6,100) len,iendd,nw												
			  stop																			
		endif																				 
		iend=iendd
		if (idebug.eq.1)
	  *	  write (*,*) ' 1 aloca: variable: ''',name,''' length: ', len,
	  *	  ' start: ',ip,' end: ',iendd-1
		return																				
 100  format(' 1 raloca: memoire excede'/								
	  *		 '		  longueur demande		  =',i10/			
	  *		 '		  taille totale ocuppe	 =',i10/			
	  *		 '		  taille totale de memoire=',i10)			
		end																				  

-- MarioStorti - 23 May 2002

Topic revision: r1 - 2002-05-23 - 13:09:04 - MarioStorti
 

TWIKI.NET
This site is powered by the TWiki collaboration platformCopyright � by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback