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Abstract. This paper presents an experimental and numerical study of the mechanical
behaviour of SAE 1045 steel sheet specimens during the conventional tensile test. Due to the
complex stress state that develops at the neck for high levels of axial deformation, an
experimental-numerical methodology is proposed in order to derive the elastic and hardening
parameters which characterize the material response. Such methodology is essentially an
extension to sheet samples of the well established procedure used for cylindrical ones. The
simulation of the deformation process during the whole test is performed with a finite element
large strain elastoplasticity-based formulation. Finally, the experimental validation of the
obtained numerical results allows to assess the performance of the proposed methodology for
the 3D analysis of sheet specimens and, in addition, to discuss the range of applicability of
plane stress conditions.



���

������ �����������-��.�� �������������������������������������������������������������������������

1 INTRODUCTION
The tensile test is an important standard engineering procedure useful to characterize some relevant

elastic and plastic variables related to the mechanical behaviour of materials. Due to the non-uniform
stress and strain distributions existing at the neck for high levels of axial deformation, it has been long
recognized that significant changes in the geometric configuration of the specimen have to be
considered in order to properly describe the material response during the whole deformation process up
to the fracture stage.

Although in many engineering applications the design of structural parts is restricted to the elastic
response of the materials involved, the knowledge of their behaviour beyond the elastic limit is relevant
since plastic effects with usually large deformations take place in the previous manufacturing
procedures such as forming, forging, etc.

The diffused necking process of both cylindrical and sheet samples used in the tensile test has been
extensively studied (see e.g. Nádai, 1950 and Bridgman, 1952). In particular, Bridgman (1952) derived,
based on some geometric considerations of the deformation pattern, analytical expressions for the stress
distribution at the neck written in terms of the ratio /a at the necking zone (  is the curvature radius of
the neck and a is either its diameter D or its width w for the cylindrical or sheet samples, respectively;
see Fig. 1). As  is an extremely difficult variable to be measured in practice, alternative equations
depending only on a have been also proposed exclusively for cylindrical samples (Bridgman, 1952).
Therefore, the applicability of this methodology to flat bars is rather limited. However, it should be
noted that the use of sheet specimens is the unique possibility to test different strip-manufactured
materials as those produced by means of rolling processes.

Figure 1. Analysis of a SAE 1045 steel tension specimen: schematic representation of the necking zone
for both cylindrical and sheet specimens.

In recent years, several finite element large strain formulations usually defined within the plasticity
framework have been developed and applied to the analysis of this test under isothermal and non-
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isothermal conditions (see e.g. Wriggers et al., 1989; Simo and Armero, 1992; Armero and Simo, 1993;
García Garino and Oliver, 1993; Simo, 1995; Goicolea et al., 1996 and references therein). Moreover,
some of such formulations have been validated, generally under isothermal conditions, with
experimental data considering cylindrical specimens of different materials. In contrast, there have been
only few studies focused on the necking phenomenon of strips (see e.g. Tvergaard, 1993 and Ling,
1996).

The aim of this paper is to present an experimental analysis and a numerical simulation of the
mechanical behaviour during the tensile test experienced by sheet specimens of SAE1045 steel. The
experimental procedure undertaken to characterize some specific features of the material response is
described in Section 2. In particular, details on the derivation of the parameters involved in the assumed
exponential plastic hardening law are given. Moreover, the governing equations together with the
constitutive model proposed to simulate the deformation process that takes place during the test are
presented in Section 3. This large strain isotropic elastoplasticity-based formulation includes the
definitions of a specific free energy function and plastic evolution equations which are the basis to
derive the stress-strain relationship and a thermodynamically consistent expression for the internal
dissipation. The corresponding finite element model is briefly presented in Section 4 where a particular
treatment of the incompressible plastic flow in order to overcome the well-known volumetric locking in
the numerical behaviour is discussed. It should be mentioned that this finite element formulation is an
alternative approach to existing methodologies dealing with large plastic deformations.

The numerical simulation of the tensile test applied to cylindrical and sheet specimens of SAE1045
steel is performed in Section 5. The results obtained with the proposed formulation are validated with
the corresponding experimental measurements. Aside from the engineering stress-strain curve, different
results at the section undergoing extreme necking are specifically analysed: ratio of current to initial
diameter in terms of the elongation and both load and mean true axial stress versus logarithmic strain.
Furthermore, computed non-uniform stress components and effective plastic deformation contours at the
fracture stage are also shown confirming the strong influence of the necking formation in the material
response.

2 EXPERIMENTAL PROCEDURE
The experimental procedure adopted in this work to characterize the mechanical behaviour of a

material consisted in the following steps:
1) Selection of the material and the specimens to be tested according to the ASTM standards (Annual

Book of ASTM Standards, 1988). The chosen material is SAE 1045 steel considering cylindrical and
sheet specimens as sketched in Fig. 2. The distance between the two black markers denotes the initial
extensometer length taken as 50 mm for both cases. A nearly linear gradual reduction in diameter and
width (for the cylindrical and sheet specimens, respectively) is considered in order to trigger the necking
development which has to take place approximately at the middle of the extensometer length. This
tapered profile fits the ASTM standards since the difference between the maximum and minimum
diameter or width values existing in the extensometer length is lower than 1%.
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a) b)

Figure 2. Analysis of a SAE 1045 steel tension specimen: geometric configurations for a) cylindrical
and b) sheet samples (dimensions in mm, initial extensometer length=50 mm and load cell speed of 2.5
mm/min for both cases).

2) Chemical characterization to check an adequate composition according to the selected material.
This routine task is carried out by means of an optical spectrometer. The average chemical composition
for the studied steel is shown in Table 1.

Table 1. Analysis of a SAE 1045 steel tension specimen: average chemical composition (% in weight).
C

0.447
Si

0.213
Mn

0.756
P

0.0148
S

0.0372
Cr

0.0635
Mo

0.0139
Ni

0.0914
Al

<0.00106
Cu

0.277
Nb

<0.0050
Ti

0.00219
V

0.00917
W

<0.01
Pb

<0.005
Sn

0.0159
B

<0.00051
Fe

98.02
Co

0.0172

3) Mechanical tensile test. The engineering stress-strain curves obtained with five cylindrical and
sheet specimens considering a load cell speed of 2.5 mm/min (value within the range specified by the
ASTM standards) are plotted in Fig. 3. As usual, the engineering stress is defined as P/A0, where P is
the axial load and A0 is the initial transversal area while the engineering strain or elongation is computed
as (L-L0)/L0, with L and L0 being the current and initial extensometer lengths, respectively. At the
beginning of the deformation process the material behaves elastically. After the yield strength is
reached, the plastic hardening begins and the load increases up to a maximum value for a specific
elongation. Then, the load decreases since the effect of the reduction of the transversal area at the
necking zone is stronger than that of the hardening mechanism. Diffuse necking has been developed for
both types of samples (localized necking is only observable for very thin strips; see Ling, 1996). The
effect of plastic deformation without hardening developed immediately after the elastic response
(usually known as Lüders’ band formation which is a typical phenomenon for steels with low to
moderate carbon contents; see  Dieter, 1988) can also be observed in these curves. It should be noted,
however, that this fact is almost imperceptible for the test with sheet samples due to, presumably, the
distorting effects produced by the machining operations necessary to make the specimens. The average
experimentally for the yield strength, maximum load, maximum engineering stress and elongation at the
fracture stage are summarized in Table 2.
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Figure 3. Analysis of a SAE 1045 steel tension specimen: average experimental stress-strain curve for a)
cylindrical and b) sheet samples.

Table 2. Analysis of a SAE 1045 steel tension specimen: average experimentally measured values.

Sample
Yield strength

(elongation: 0.2%)
[MPa]

Maximum
load
[kN]

Maximum
engineering stress

[MPa]

Elongation at the
fracture stage

[%]
Cylindrical 450.4 46.6 749.2 18.5

Sheet 451.6 56.5 762.0 20.0

4) Characterization of the plastic behaviour. At high levels of elongation, the stress and strain
distributions are no longer uniform along the specimen due to the necking formation that takes place for
both cylindrical and sheet samples. Therefore, the stress-strain curve of Fig. 3 can not provide a proper
description of the physical phenomena involved in the test. Following the procedure proposed by
Bridgman (1952), the mechanical response can be adequately described by an alternative stress-strain
curve defined in terms of the mean equivalent stress eq  versus an equivalent deformation eq

(composed of an elastic and plastic contributions) respectively given by eq =fBP/A and eq= eq /E + p,
where fB( p) 1 is an assumed known correction factor applied to the mean true axial stress P/A, A is the
current transversal area at the necking zone (A= D2/4 or A=wt for the cylindrical and sheet samples,
respectively, where D, w and t are the current diameter, width and thickness of the neck), E is the
Young’s modulus and p=ln(A0/A) is the true (logarithmic) deformation. A preliminary step to obtain
such stress-strain relationship (in which, as can be seen, D, w and t are the additional variables to be
measured), consists of deriving the P/A- p curve shown in Fig. 4 using four specimens for each of both
samples.

Details of the application of this procedure are described in Sections 5.1 and 5.3 for cylindrical and
sheet specimens, respectively.
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Figure 4. Analysis of a SAE 1045 steel tension specimen: mean true axial stress versus true
(logarithmic) deformation for a) cylindrical and b) sheet samples.

3 GOVERNING EQUATIONS AND CONSTITUTIVE MODEL
The local governing equations describing the evolution of an assumed quasi-static isothermal process

(i.e., that with negligible inertia effects and identically fulfilled energy balance) can be expressed by the
continuity equation, the equation of motion and the dissipation inequality (all of them valid in x ,
where  is the spatial configuration of a body and  denotes the time interval of interest with t )
respectively written in a Lagrangian description as (Malvern, 1969):

0J (1)

0b f (2)

0intD (3)

together with appropriate conditions and an adequate constitutive relation for the Cauchy stress tensor 
(which is symmetric for the non polar case adopted in this work). In these equations,  is the density, J
is the determinant of the deformation gradient tensor F ( u1F 1- , where 1 is the unity tensor,  is
the spatial gradient operator and u is the displacement vector), the subscript 0 applied to a variable
denotes its value at the initial configuration 0, bf is the specific body force vector and Dint is the
internal dissipation which imposes restrictions over the constitutive model definition. In this framework,
a specific Helmholtz free energy function , assumed to describe the material behaviour during the
deformation process, can be defined in terms of some thermodynamic state variables chosen in this
work as the Almansi strain tensor e ( )(21 1--T-/ FF1e , where T is the transpose symbol) and a set of
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nint phenomenological internal variables k (usually governed by rate equations with int,...,1 nk )
accounting for the non-reversible effects (García Garino and Oliver, 1993; Goicolea et al., 1996;
Celentano, 2001). This free energy definition, based on the Doyle-Ericksen’s approach (Doyle and
Ericksen, 1956), is only valid for small elastic strains and isotropic material response, both assumptions
being normally accepted for metals and other materials. Invoking the Coleman’s method (Coleman and

Gurtin, 1967), the following relationships are obtained: e  and Dt
DD k

k *int q  where

k
k 0q  are the conjugate variables of k and, according to the nature of each internal

variable, the symbols  and D( )/Dt appearing in the previous expressions respectively indicate an
appropriate multiplication and a time derivative satisfying the principle of material frame-indifference
(Malvern, 1969).

It is seen that the definitions of = (e, k) and D k/Dt are crucial features of the model in order to
derive the constitutive equations presented above.

The internal variables and their corresponding evolution equations are defined in this work within
the associate rate-independent plasticity theory context (Lubliner, 1990; Simo, 1995). A possible choice
is given by the plastic Almansi strain tensor ep and the effective plastic deformation pe  related to the
isotropic strain hardening effect (García Garino and Oliver, 1993; Goicolea et al., 1996; Celentano,
2001). The evolution equations for such plastic variables are written as:

FL p
v )(e                             pe (4)

where  is the Kirchhoff stress tensor ( =J ), Lv is the well-known Lee (frame-indifferent) derivative, 
is the rate (or increment in this context) of the plastic consistency parameter computed according to
classical concepts of the plasticity theory (Simo, 1995) and F=F( , pe ) is the yield function governing
the plastic behaviour of the solid such that no plastic evolutions occur when F<0. A Von Mises yield
function is adopted:

pCJF 23      (5)

where J2 is the second invariant of the deviatoric part of  and Cp is the plastic hardening function given
by:

pnpppp eeAC )( 0
     (6)

where pe0  is an assumed initial value of pe  such that 
pnppth eAC 0  with Cth being the yield strength

defining the material elastic bound. The hardening material parameters Ap and np appearing in the
isotropic strain hardening law (6) are assumed to characterize the material behaviour in the plastic range
(strain rates effects are neglected due to, as described in Section 2, the very low load cell velocity
considered in the tensile tests). Their derivation from the experimental-based correlation of the mean
equivalent stress versus equivalent deformation curve will be described in Section 5. Furthermore, in
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this context the effective plastic deformation rate can be also computed as pppe dd :3/2 , where
dp=Lv(ep) is the plastic contribution of the rate-of-deformation tensor d given by )(2/1 vvd

where uv  is the velocity vector. A consequence of this model is that tr(dp)=0 (tr is the trace symbol)
which reflects the incompressibility nature of the plastic flow that has been physically observed in many
metals at moderate pressure levels (Bridgman, 1952).

The following specific free energy function = (e- ep, pe ) is proposed:

0
0

1
0

0
0

00

1)(
)1(

1::)(1)(::)(
2
1 pthnppp

p
ppp eCeeA

n
p

CeeeeCee      (7)

where C is the isotropic elastic constitutive tensor. This last equation is a partially coupled form of
defining  which considers the density at the initial configuration according to the simplification of the
Doyle-Ericksen’s approach (Doyle and Ericksen, 1956). However, the elastic/plastic decomposition of

 can be considered nowadays well established since different versions of it have successfully been
used in many engineering applications (see e.g. Wriggers et al., 1989; Lubliner, 1990; Simo and
Armero, 1992; Armero and Simo, 1993; García Garino and Oliver, 1993; Simo, 1995; Goicolea et al.,
1996; Celentano et al., 1999; Celentano, 2001 and references therein). Moreover, the additive
decomposition of the Almansi strain tensor is recovered in this context through the multiplicative
decomposition of the deformation gradient into elastic and plastic contributions (García Garino and
Oliver, 1993). It should also be mentioned that the description of the fracture and damage phenomena
are not included in the proposed specific free energy function given by equation (7).

The previous definitions allow to derive the stress-strain law (secant or hyperelastic form for the
Cauchy stress tensor) and the expression of the internal dissipation which are respectively given by:

)(:1 thps

J
eeeC      (8)

0)()(int
pthpp

v eCCLD e      (9)

The tangent form of the stress-strain law stated by equation (8) can be obtained applying standard
procedures of the plasticity theory (Simo, 1995). Although this rate expression is not strictly needed
within the present hyperelastic context, its derivation is particularly relevant in the computation of the
stiffness matrix appearing in the finite element formulation described in Section 4. Finally, it is worth
noting that the internal dissipation inequality is effectively fulfilled (i.e., both terms are separately non-
negative for every thermodynamic state) owing to the adopted definitions for the plastic evolution
equations (4).

4 FINITE ELEMENT FORMULATION
The finite element equation derived from the model presented above are briefly described in this

Section together with some important features of the numerical strategy used to solve the resulting
system of discrete equations.
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Following the standard procedures within the finite element framework (Zienkiewicz and Taylor,
1989), the global discretized equilibrium equation including mass conservation can be written in matrix
form for a certain time t (or load level for the present quasi-static case) as:

 0FFR UU
   (10)

where RU is the residual vector, FU is the external force vector and F  denotes the internal force vector.
The element expressions of these vectors can be found in Celentano (2001). It should be noted that RU is
computed at the initial configuration using the well-known total Lagrangian approach (Crisfield, 1991).
In this context, all the variables involved in RU have to be transformed to the initial configuration.
Moreover, a unconditionally stable generalized mid-point rule algorithm has been used to integrate the
plastic rate equations presented above via a return-mapping procedure (Crisfield, 1991; Simo, 1995). On
the other hand, the jacobian matrix needed in the Newton-Raphson iterative process derived by
Celentano (2001) is, owing to the strong non-linearities inherent in the formulation, an approximated
but numerically accurate expressions for JUU is considered where KU is the so-called stiffness matrix. In
this total Lagrangian approach, the stiffness matrix consists of two terms usually denoted as the material
and geometric contributions respectively related to the elastoplastic constitutive behaviour and the non-
linear effects of the adopted strain measure (Crisfield, 1991).

Although classical spatial interpolations for the displacement field have been considered in equation
(10), an improved strain-displacement matrix B , previously proposed by Celentano (2001) and checked
in problems involving moderate deformations, is also employed in this work in order to overcome the
volumetric locking effect on the numerical solution when incompressible plastic flows are studied. The
performance of this methodology is now tested in a large strain situation like the necking process of a
cylindrical tension specimen described below. Based on the deformation gradient standard
decomposition into deviatoric and volumetric parts, and assuming a selective numerical integration for
the volumetric part of F, the B  matrix is obtained by linearization of the Green-Lagrange strain tensor.
The expressions of this matrix for the 2D, axisymmetric and 3D cases can be found in the mentioned
reference. It should mentioned that the B  matrix has not a sparse structure. Nevertheless, the additional
computations required at element level were found not to significantly increase the CPU times in
comparison with the standard sparse strain-displacement matrix. This methodology is an alternative
approach to the assumed strain mixed finite element method developed by Simo and Armero (1992) in
which a sparse gradient operator is obtained with the drawback of computing and storing, at element
level, enhanced strain parameters defined in such context. Note that these last operations are not needed
in the present B  algorithm and, hence, a simple computational implementation of it may be attained.

5 EXPERIMENTAL CHARACTERIZATION AND NUMERICAL SIMULATION
The main objective of the present analysis is to validate the predictions of the proposed formulation

with the experimental data obtained in the tensile tests of SAE 1045 steel in order to achieve an
adequate mechanical characterization of this material when either cylindrical or sheet specimens are
considered. To this end, the experimental procedure described in Section 2 is firstly applied to
cylindrical specimens. Then, the finite element formulation presented above is used to simulate the
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material behaviour during the tension deformation process (Section 5.1). Using the same material
properties derived from the experiments with cylindrical specimens, the simulation of the tensile test
using sheet specimens is subsequently performed (Section 5.2). An experimental validation of the
numerical predictions is included for both simulations. Afterwards, a correction factor obtained from the
numerical analysis with sheet specimens allows to carry out the experimental hardening characterization
applied to this type of samples with the sake of checking the appropriateness of such procedure (Section
5.3).

5.1 Experimental hardening characterization and simulation using cylindrical specimens
The experimental procedure detailed in Section 2 is applied to SAE 1045 steel cylindrical specimens

to characterize its plastic hardening behaviour. The correction factor fB( p) proposed by Bridgman
(1952) for cylindrical specimens is plotted in Fig. 5 ( p=–2ln(D/D0) for this case). Fig. 6 shows the eq -

eq average experimental data and the potential correlation 
pn

eq
p

eq A  derived from it where Ap and np

are, as mentioned in Section 3, the hardening parameters. These hardening parameters are the basic data
for the numerical simulation and experimental validation presented below.
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Figure 5. Analysis of a SAE 1045 steel tension specimen: Bridgman (1952) correction factor as a
function of true deformation for a cylindrical sample.

The finite element formulation described in Section 4 is used to simulate the material behaviour
during the tensile test. According to the experimental measurements performed during these tests, the
material properties considered in the numerical analysis for SAE 1045 steel are shown in Table 3. The
spatially non-uniform finite element mesh shown in Fig. 7 have been chosen in order to correctly
describe the large stress and deformation gradients expected in the necking zone. Assuming
axisymmetry, a fourth of the specimen is discretized with a height of 25 mm (half of the initial
extensometer length) and a linear radius variation along the bar according to the geometry specifications
depicted in Fig. 2.a where Utop denotes the axial displacement imposed at the top boundary up to a value
which corresponds to the fracture elongation (see Table 2). Moreover, all the simulations are performed
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with bf=0 and 0=0.
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Figure 6. Analysis of a SAE 1045 steel cylindrical tension specimen: mean equivalent stress versus
equivalent deformation.

Table 3. Analysis of a SAE 1045 steel tension specimen: material properties considered in the numerical
simulations.

Young’s modulus E 222000 [MPa]

Poisson´s ratio 0.30

Yield strength Cth 450 [MPa]

Hardening coefficient pA 1047.7

Hardening exponent pn 0.1206

Figure 7. Analysis of a SAE 1045 steel cylindrical tension specimen: axisymmetric finite element mesh
used in the simulation (mesh composed of 360 four-noded isoparametric elements).
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Fig. 8 shows the engineering stress-strain relationship and some results at the section undergoing
extreme necking: the radii relation versus the elongation in the necking zone together with the load and
mean true axial stress both against the logarithmic deformation. An overall good agreement between the
numerical predictions and the average experimental values can be observed in these curves. The
discrepancies appearing in the engineering stress-strain curve can be mainly attributed to the inaccuracy
of the potential correlation at the beginning of the plastic region where no hardening is produced.

a)

0

100

200

300

400

500

600

700

800

900

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

Engineering deformation   (L-Lo)/Lo

En
gi

ne
er

in
g 

st
re

ss
 P

/A
o 

[M
Pa

] 

simulation

experimental

b)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
Engineering deformation  (L-Lo)/Lo

D
/D

o

simulation

experimental

c) 

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
True deformation -2ln(D/D0)

Lo
ad

   
P 

[k
N

]

 simulation
 experimental

 d)

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
True deformation  -2ln(D/Do)

P/
A

 [M
Pa

]

simulation
experimental

Figure 8. Analysis of a SAE 1045 steel cylindrical tension specimen. a) Engineering stress-strain
relationship. Results at the section undergoing extreme necking: b) ratio of current to initial diameter
versus axial elongation, c) load versus true deformation and d) mean true axial stress versus true
deformation.

The experimentally measured load decreases from an elongation of 11.5 % or, equivalently, to a
logarithmic deformation p of 11.2 % onwards (the corresponding deformations provided by the
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simulation are 12.4 % and 11.7 %, respectively). However, the mean true axial stress continues
increasing until the fracture stage where a big amount of plastic hardening can be appreciated. This fact
confirms that a geometrical instability occurs (instead of a constitutive instability) since, as already
commented in Section 2, the effect on the stress caused by the reduction of the transversal area at the
necking zone predominates over the material hardening. At high level of deformations, the regions of
the specimen outside the necking zone are being elastically unloaded. Moreover, note that the well-
known simplified relationship (Dieter, 1988), stating that the related logarithmic deformation at the
point of maximum load has to be equal to the hardening exponent, is approximately verified (see Table
3 and Figure 6).

The numerical predictions for the ratio of current to initial diameter in terms of the elongation starts
with a linear relationship, reflecting uniform distributions of stresses and strains, which presents an
approximate slope of 0.5 due to the incompressibility nature of the plastic flow. The same situation is
kept up to an elongation of 12.5 % which corresponds, as mentioned above, to the point of maximum
load. Afterwards, a sudden reduction of the diameter takes place causing the necking formation and,
hence, non-homogeneous stress and strain distributions along the specimen. As can be seen, the
numerical results fit reasonably well the experimental ones during the whole test even though the
inherent difficulty associated with the measurement of the diameter at the neck.

Fig. 9 compares the correction factor in terms of true deformation proposed by Bridgman (1952) with
that obtained through the numerical simulation as the quotient between the average equivalent stress at
the neck and the mean true axial stress P/A. It is observed that both curves present practically the same
response (the maximum discrepancy existing within the range of deformation 0%-57% experienced by
the material as shown in Fig. 8 is less than 1 %). A uniform stress distribution, expressed by the
condition fB 1, is obtained for p 0.1. For larger deformations, triaxial stresses are developed and,
therefore, the effect of the correction factor on P/A becomes relevant.

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True deformation  -2ln(D/Do)

  C
or

re
ct

io
n 

fa
ct

or
 

Bridgman's  factor
simulation

Figure 9. Analysis of a SAE 1045 steel tension specimen: simulated correction factor as a function of
true deformation for a cylindrical sample.
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Different stress components (hoop, radial, axial and shear components of  together with the
pressure p=1/3 tr( ) and the equivalent stress eq given by 23J ) and effective plastic deformation
contours at the end of the analysis (fracture stage) can be found in Fig. 10. Non-uniform distributions
are clearly obtained due to the complex deformation pattern of the neck. As expected, the maximum
values of eq and consequently of pe  are concentrated in the neck. Note that values around 0.10 of
effective plastic deformation mainly found at the rear part of the specimen indicate the level of uniform
deformation experienced until the maximum load is reached (see Fig. 8). The neck formation even
induces the development of low pressures at the center of the bar (this fact has also been pointed out by
Armero and Simo (1993) and Goicolea et al. (1996) in the tension analysis of other materials).
Furthermore, some assumptions considered in the analytical study of Bridgman (1952) at the neck are
ratified by the simulation, e.g., eq and pe  are approximately constant, rr and  present a strong
variation but the condition rr  is fullfiled, zz eq+ rr eq that explains the need to correct the
stress distribution, p eq/3+ rr, ezz -2err up to the maximum load and err e  during the whole test.

                                 rr                 zz                 rz                p                   eq              pe

Figure 10. Analysis of a SAE 1045 steel cylindrical tension specimen: stress (in MPa) and effective
plastic deformation contours at the end of the simulation corresponding to the fracture stage for an
elongation of 18.5 %.

5.2 Simulation using sheet specimens
The previously described finite element formulation is also used to simulate the material response

during the tensile test using sheet specimens considering the same properties derived from the
experiments with cylindrical samples (see Table 3). The 3D finite element mesh is shown in Fig. 11
where, due to symmetry, only one eighth is studied (note that this mesh presents a similar element
densification as that shown in Fig. 7). Fitting the specifications of Fig. 2.b, the neck in the middle of the
specimen is triggered by assuming a linear width variation along its length. As in the previous analysis,
Utop denotes the prescribed axial displacement imposed at the top boundary up to fracture.

The engineering stress-strain relationship together with some results at the necking zone (width and
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thickness ratios versus the elongation and the load and mean true axial stress both against the
logarithmic deformation) are plotted in Fig. 12. Once more, an overall good agreement between the
numerical predictions and the average experimental values can be observed in these curves. The
discrepancies appearing in the engineering stress-strain curve can be also attributed to the inaccuracy of
the potential correlation at the beginning of the plastic region where little hardening is produced.

Figure 11. Analysis of a SAE 1045 steel sheet tension specimen: 3D finite element mesh used in the
simulation (mesh composed of 3440 eight-noded isoparametric elements).

Although some small discrepancies in the load and mean true axial stress appear at higher levels of
deformation, it should be noted that such differences are approximately bounded within the
experimental uncertainty range.

The experimentally measured load decreases from an elongation of 12.5 % or, equivalently, to a
logarithmic deformation p of 11.8 % onwards (the corresponding deformations provided by the
simulation are 13.0 % and 12.2 %, respectively). A geometrical instability caused by the necking
formation is also observed for this case since the mean true axial stress continues increasing until the
fracture stage.

The numerical predictions for the w/wo and t/to ratios match each other at the beginning of the test
since a uniaxial stress is achieved for a low level of elongation in the range 0%-13.0%. Once the neck is
formed, both curves progressively differ where, as in the experiments, the reduction in t/to is stronger
than that of w/wo.

The six components of , the pressure p, the equivalent stress eq and effective plastic deformation
contours at the fracture stage are plotted in Fig. 13. Once again, non-uniform distributions are clearly
obtained due to the complex deformation pattern of the neck where, as expected, the maximum values
of eq and consequently of pe  are concentrated in the neck. In particular, note that a very strong
variation of the effective plastic deformation is found at the neck. Only positive pressures are obtained
for this case.

Fig. 14 shows the correction factor in terms of true deformation obtained from the simulation. This
curve is also presented in Table 4. For a given value of logarithmic strain, note that the effect of the
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correction factor is larger for sheet specimens than that for cylindrical ones.
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Figure 12. Analysis of a SAE 1045 steel sheet tension specimen. a) Engineering stress-strain
relationship. Results at the section undergoing extreme necking: b) ratio of current to initial width and
thickness (mean values along thickness and width, respectively) versus axial elongation, c) load versus
true deformation and d) mean true axial stress versus true deformation.

5.3 Experimental hardening characterization using sheet specimens
The consideration of the proposed correction factor of Fig. 14 allows the derivation of the

experimental eq - eq curve for sheet specimens. The average measured data together with the

corresponding potential correlation 
pn

eq
p

eq A  are both shown in Fig. 15. As can be appreciated,
these hardening parameters are practically the same to those of Fig. 6 for cylindrical specimens. This
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proposed methodology shows, therefore, that an adequate characterization of the material response can
be also achieved for sheet samples.

 xx                                yy                         xy          
  

 zz                     xz              yz 

            p                                           eq                                    pe

Figure 13. Analysis of a SAE 1045 steel cylindrical tension specimen: stress (in MPa) and effective
plastic deformation contours at the end of the simulation corresponding to the fracture stage for an
elongation of 20.0 %.
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Figure 14. Analysis of a SAE 1045 steel tension specimen: simulated correction factor as a function of
true deformation for a sheet sample.

Table 4. Analysis of a SAE 1045 steel tension specimen: correction factor as a function of true strain.

ln(Ao/A)
 Correction factor

Cylindrical sample Sheet sample

0.10 1.000 1.000
0.20 0.978 0.976
0.30 0.957 0.955
0.40 0.938 0.933
0.50 0.921 0.909
0.60 0.905 0.884
0.70 0.890 0.858
0.80 0.876 0.830
0.90 0.863 0.800
1.00 0.851 0.769

eq eq
0.12401024.0 

R2 = 0.9791
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Figure 15. Analysis of a SAE 1045 steel sheet tension specimen: mean equivalent stress versus
equivalent deformation.
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6 CONCLUSIONS
Experimental and numerical analyses of the mechanical behaviour occurring in cylindrical and sheet

specimens during the standard tensile test applied to SAE1045 steel have been presented. A
characterization of the material response using cylindrical specimens has been firstly performed in order
to obtain the stress-strain curve and the diameter evolution at the neck which allow, in turn, to derive the
elastic and hardening by means of a well established methodology. Then, a finite element large strain
elastoplasticity-based formulation has been proposed and used to simulate the tensile deformation
process in such type of samples. Moreover, these material properties have been considered in the
subsequent numerical analysis of the tensile test using sheet specimens. The results provided by both
simulations have been satisfactorily validated with experimental data. Afterwards, a successful
experimental hardening characterization carried out for sheet specimens using a correction factor
deduced from the simulation has been performed. Finally, the proposed methodology has enabled to
achieve an adequate description of the mechanical response of the material during the tensile test when
using either cylindrical or sheet specimens.
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