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Abstract. The numerical simulation of dynamic wetting phenomena at small length scales, where cap-
illary forces must be taken into account, is considered. We introduce an arbitrary Lagrangian-Eulerian
(ALE) formulation for two and three-dimensional sliding droplet simulations. The explicit representation
of phase-separating interfaces in the mesh allows for accurate treatment of surface tension. Boundary
conditions, including conditions for the controversial contact lines, are naturally incorporated by means
of the finite element method (FEM). The dependence of the capillary forces on the geometry introduces
a strong nonlinearity on the system of equations. A scheme of time discretization where the geome-
try is decoupled from the other variables is presented. Optimal temporal convergence for velocity and
pressure can be obtained by an extrapolated Crank-Nicolson method in ALE moving grids, as shown by
preliminary numerical experiments.
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1 INTRODUCTION

The numerical simulation of flows with interfaces, specially capillary flows in the presence of
the contact lines, has been carried out by many authors using the arbitrary Lagrangian-Eulerian
(ALE) framework (Walkley and Gaskell (2005), Gerbeau and Lelièvre (2009), Sprittles and
Shikhmurzaev (2012), Rabier and Medale (2003)). One of the main reasons for that is that the
ALE framework allows an accurate representation of surface forces like surface tension, mem-
brane effects, etc., compared to front-capturing methods (Popinet and Zaleski, 1999). However,
despite the extensive discussion about geometric conservation laws (GCLs) and conservative
and non-conservative formulations in ALE literature (see, e.g., Formaggia and Nobile (2004)
and references therein), time convergence has been ignored in this scenario. For instance, there
is nothing in the literature (to the best of our knowledge) reporting second order time conver-
gence of the Crank-Nicolson method (CN) applied to the capillary equations in ALE formu-
lation (or related equations where the ALE mesh velocity depends on the other variables). In
Reusken and Esser (2013), which also is in the capillarity context, it is shown optimal conver-
gence for CN but for a fixed grid based method. The work of Nobile (2001) presents a com-
plete stability analysis for both conservative and non-conservative ALE formulation addressing
GCLs. Nevertheless, his non-conservative formulation for convection–diffusion equations did
not result in optimal convergence for velocity in our tests for capillary equations. In the studies
of Étienne et al. (2009), where the addressed problem does not have interface and the mesh
velocity is known, only sub-optimal convergence is obtained for the CN/non-conservative for-
mulation.

In this study we will follow the formulation for capillary flows presented in Buscaglia and
Ausas (2011) and discuss its numerical aspects in the ALE framework. The surface tension
is accounted for weakly in the variational formulation by the Laplace-Beltrami representation
of the curvature. We will present an extrapolated CN where the mesh velocity, which is also
an unknown, is decoupled from the other variables u-p and treated explicitly. The price for
this extrapolation simplification is a CFL constraint introduced by capillary waves Brackbill
et al. (1992), but this issue will only be addressed in further studies. Our concern relies on the
temporal convergence of the velocity u and pressure p in the presence of geometry-dependent
forces. We also present some numerical experiments that show quadratic convergence for the
velocity and pressure for capillary equations.

2 THE DYNAMIC WETTING EQUATIONS

As in most of the literature on capillary phenomena, we focus on incompressible flows of
Newtonian fluids where surface inertial effects are neglected. The specific case of solid-liquid-
gas flow is considered, where constant pressure, zero viscosity and zero mass density are as-
sumed for gas phase. The Navier-Stokes equations for the liquid phase occupying a time de-
pendent region Ω(t) ⊂ Rd reads:

∂(ρu)

∂t
+ u · ∇(ρu) = −∇p+∇ · (2µDu) + ρg, x ∈ Ω(t) (1a)

∇ · u = 0 x ∈ Ω(t) (1b)

where u is the fluid velocity, p the pressure, ρ the mass density, µ the dynamic viscosity, g a
body force (e.g. gravity) and D = 1/2(∇+∇T ) the symmetric gradient operator. In slip models
context, the capillary forces at liquid-gas interface (Γ), liquid-solid interface (Γs) as well at
contact line (∂Γs) and the classic Navier-type slip law are modeled as the following boundary
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conditions (Buscaglia and Ausas, 2011):

σ · n = −γκn +∇Γγ, x ∈ Γ, (2a)
(I− nn) · σ · n = −β(I− nn) · (u− us), x ∈ Γs, (2b)

u · n = us · n, x ∈ Γs, (2c)
cos θ(x, t)− cos θs = −ζ(u− us) · νs/γ, x ∈ ∂Γs, (2d)

where I is the identity tensor, n the outward normal, θ the dynamic contact angle, ∇Γ
.
= (I −

nn) · ∇ the surface gradient operator, κ = ∇Γ · n the mean curvature positively counted with
respect to the normal, σ the Cauchy stress tensor, γ the liquid-gas surface tension, us the solid
velocity, θs the static contact angle, β the slip coefficient and ζ a parameter of the contact line
dissipation force model. The contact angle is defined by the relation

cos θ = ν · νs, (3)

where ν and νs are the liquid-gas and solid-liquid surfaces conormals, respectively. The sur-
faces and the contact lines evolution are also unknowns. Here, we suppose that the bounding
surface is the same the material surface at all time, i.e., a particle ϕ(., t) : Ω(0)→ Ω(t) initially
belonging to a surface remains at the surface:

ϕ(x, t = 0) ∈ Γ(t = 0)⇔ ϕ(x, t) ∈ Γ(t). (4)

To close the system, a compatible initial velocity field u0(x) and an initial configuration Γ(t =
0) is given.

3 NUMERICAL APPROACH

3.1 Arbitrary Lagrangian-Eulerian method

The idea of the ALE method is to rewrite the time derivatives at a point x fixed in space
(denoted by ∂t) at time t in terms of the time derivative along a pathline A−1(x, t) (ALE time
derivative ∂∗t ) defined by an arbitrary velocity field v(x, t), namely

∂t = ∂∗t − (v · ∇), v(x, t)
.
=
∂A
∂t
◦ A−1

t (x, t), (5)

where the diffeomorphismA is constructed according to v and takes a point from the reference
domain Ω̂ = Ω(t = 0) to the current domain Ω(t). The advantage of this formulation is
that one can move the mesh arbitrarily while the time integration of a quantity can still be made
entirely at the mesh’s vertices as in Eulerian frames. The ALE formulation of the Navier-Stokes
equations (1), where we will assume constant mass density, is given by

ρ (∂∗t u + (c · ∇)u) = ∇ · σ + ρg, x ∈ Ω, (6)
∇ · u = 0, x ∈ Ω, (7)

where we defined c
.
= u−v (convective velocity) for the sake of simplicity. Because it is desired

that the mapping A follows the domain’s shape, the velocity field must satisfy the condition

v · n = u · n (8)

on the entire boundary ∂Ω = Γ ∪ Γs at all times.
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3.2 Variational Formulation

In order to present the variational formulation, we define the following Sobolev spaces

W0
.
=
{
w ∈

(
H1(Ω)

)d |w · n = 0 on Γs

}
, (9a)

Wu
.
=
{
w ∈

(
H1(Ω)

)d |w · n = us · n on Γs

}
, (9b)

Q
.
= L2(Ω)

(
or L2(Ω)/R if needed

)
, (9c)

where H1(Ω) and L2(Ω) are the usual Sobolev spaces. The corresponding variational for-
mulation of the problem is: for all (w, q) ∈ W0 × Q, find (u, p) ∈ Wu × Q such that
u(x, t = 0) = u0(x) and∫

Ω

[ρ (∂∗t u + [(c · ∇)u]) ·w + (2µDu− pI) : Dw] +

+

∫
Γs

β(u− us) ·w +

∫
∂Γ

ζ((u− us) · νs)(w · νs) =

∫
Ω

ρg −
∫

Γ

γ∇Γ ·w+ (10a)

+

∫
∂Γ

γ cos θsw · νs,∫
Ω

q∇ · u = 0, (10b)

where Ω = A(Ω̂, t), and also find any smooth mapping such that

(u− v) · n = 0, x ∈ ∂Ω. (11)

The construction of A and its restriction (11) will be discussed after discretization, while the
derivation of capillarity terms in the variational formulation can be found in Buscaglia and
Ausas (2011). Henceforth we simplify our model by supposing a fixed wall (us = 0) so that
we can consider the trial and tests functions in a same space W (= W0 = Wu).

3.3 Discretization in space

Let Th(t) be a mesh partition of the domain Ω(t), and Wh and Qh be the finite element
subspaces of W and Q, respectively, whose bases are polynomials in each simplex K ∈ Th and
are chosen to be nodal interpolation functions, for simplicity. We distinguish all fields (velocity,
pressure, normal, etc.) and sets (Ω, Γ, etc.) from their discrete counterpart by a subscript h. The
velocity uh and pressure ph approximations are written by

uh(x, t) =
∑
j

φj(x, t)uj(t), φj(·, t)eα ∈ Wh, (12a)

ph(x, t) =
∑
k

ψk(x, t)pk(t), ψk(·, t) ∈ Qh, (12b)

where eα, α = 1, ..., d, are Rd canonical base’s vectors and uj and pk are variables coefficients
with nodal value meaning. We use isoparametric interpolation in order to maintain optimal
spatial convergence when a high order polynomial for velocity is used. Thus, the semi-discrete
version of the mesh velocity is given by

vh(x, t) =
∑
j

φj(x, t)Vj(t), (13)
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where the coefficient Vj is the velocity of the jth node.
We assume that the problem has a unique solution (uh, ph) ∈ Wh × Qh with the following

error estimation

‖u− uh‖Wu
+ ‖p− ph‖Qh

≤ C

(
inf

wh∈Wh

‖u−wh‖Wh
+ inf

qh∈Qh

‖p− qh‖Qh

)
. (14)

3.4 Some finite elements

In this study, we use the LBB stable element P2P1 (piecewise quadratic polynomial for
velocity and piecewise linear for pressure). We also test the stabilized element P1P1(ASGS)
presented in Codina (2001) (this stabilization is identical to the Galerkin-least squares for linear
elements) and the mini-element P+

1 P1. We intend to asses the impact of these stabilization terms
in the time convergence of our ALE framework.

3.5 Discretization in time

We use the superscript n to refer to the time level tn = n∆t, where the time step ∆t
.
=

tn+1 − tn is chosen to be constant. We also use the notation

fn+θ .
= θfn+1 + (1− θ)fn, δfn

.
= fn+1 − fn and δnt f

.
=
δfn

∆t
. (15)

In this study, we consider a piecewise linear time approximation of the mesh motion. LetAnh(y)
be a parametrization of the mesh geometry at the instant tn given by

Anh(y) =
∑
j

φ̂j(y)Xj(tn), (16)

where Xj is the coordinate of the jth node and φ̂j = φj(·, tn) ◦ Anh. In this way, for each time
interval (tn, tn+1], we have

Ah(y, t) = An+1
h (y)

t− tn

∆t
+Anh(y)

tn+1 − t
∆t

, t ∈ (tn, tn+1]. (17)

The time derivative of the previous mapping leads to a constant mesh velocity given by

v̂h(y, t)
.
=
An+1
h (y)−Anh(y)

∆t
, t ∈ (tn, tn+1]. (18)

It means that each node of the mesh moves with a constant velocity in each time interval
(tn, tn+1]. This velocity expressed in current frame is given by

vh(x, t) = v̂h(A−1
h (x, t)), t ∈ (tn, tn+1], (19)

and is discontinuous at times tn.
We focus here on the extrapolated Crank-Nicolson method. Applying it on the scheme of

(10), we have the following problem statement: for a given Anh, an extrapolation of An+1
h and
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[uh ∈ Wh]
n, find [(uh, ph) ∈ Wh ×Qh]

n+1 such that, for all [(wh, qh) ∈ Wh ×Qh]
n+1/2,∫

Ω
n+1/2
h

ρ
(
δnt uh +∇un+1/2

h · cn+1/2
h

)
·wh+

+

∫
Ω

n+1/2
h

(−Idrn+1 + 2µDu
n+1/2
h ):Dwh+

+

∫
Γ
n+1/2
h,s

βu
n+1/2
h ·wh = −

∫
Γ
n+1/2
h

γ∇Γ ·wh

+

∫
∂Γ

n+1/2
h

γ cos θsνs ·wh −
∫
∂Γ

n+1/2
h

(ζu
n+1/2
h · νs)(wh · νs); (20a)∫

Ωn+1/2

∇ · un+1/2 = 0, (20b)

where Ωn+1/2 is the domain computed with the average of Anh and (extrapolated) An+1
h . The

rn+1 term is the approximation of the pressure at the mid step, i.e.,

lim
∆t→0

rn+1 = ph(·, tn+1/2). (21)

Thus, to find the pressure at time tn a post-processing is needed.

Remark One could consider to replace rn+1 by pn+1/2
h = (1/2)(pn+1

h + pnh). However, in this
approach an initial pressure ph(·, 0) must be specified. The problem is that this initial field
must satisfy a compatibility condition for the quantities ‖uh(·, t)‖H3 and ‖∂tuh(·, t)‖H1 to be
bounded.

When a function defined on a domain Ωn+α appears in a integral over a different domain
Ωn+θ, where α, θ ∈ [0, 1], it means that this function is transported onto Ωn+θ by an ALE
mapping An+α,n+θ

h given by

An+α,n+θ
h

.
= An+θ

h ◦ (An+α
h )−1. (22)

For example, the first term in (20) we write∫
Ω

n+1/2
h

un+1
h ·wh (23)

for what should be ∫
Ω

n+1/2
h

(un+1
h ◦ An+1/2,n+1

h ) ·wh (24)

Now we present how An+1
h is extrapolated to complete the overview of the method.

4 GEOMETRY EXTRAPOLATION

Due the integrations on Ω
n+1/2
h which are computed with An+1/2

h , the geometry is nonlin-
early coupled with other variables un+1

h and rn+1 by all equations. To eliminate this type of
nonlinearity and to reduce the number of unknowns of the system, we perform a second or-
der linearization. At time step n, given unh, un−1

h , and the mesh Anh, we do the following: we
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move the coordinates of Anh with the vector field vh (the mesh velocity) obtained from a linear
elasticity problem of the form

L(vh) = 0, (25)

where L is a linear second order operator. As Dirichlet boundary conditions, an extrapolation
of the fluid velocity at time u

n+1/2
h is used:

v
n+1/2
h =

1

2
(3unh − un−1

h ), x ∈ Γ. (26)

Rewriting (18), we obtain the expression of the extrapolated mesh, given by

An+1
h = Anh + v̂

n+1/2
h ∆t. (27)

Then, we proceed and solve the system (20). One can use the obtained velocity un+1
h to recom-

pute a better vh and solve the system (20) again, like a preditor–corretor algorithm. To save
computation effort, we do this only in the first time step, where un−1

h is not defined as well as
the ansatz (26). This idea of using an extrapolated velocity is similar to the one proposed in
Gerbeau and Lelièvre (2009). As will be seen in results, this strategy does not affect the second
order accuracy of the velocity of the original CN, even in the presence of the capillary terms
that depend on the geometry.

5 MESH MOVEMENT SMOOTHING

Ideally, the Eq. (25) must be such that its solution vh is a smooth extension of the boundary
displacement vh∆t, so that the good quality of the mesh elements is maintained. We have
chosen to use a variant of a linear elasticity equation proposed by Dwight (2009). Therein, the
Lamé constants λ and µ of the linear elasticity equation

∇ · (λTr(Dv)I + 2µDv) = 0 (28)

are chosen to be λ = −µ = E, where E is the Young’s modulus and is element-wise constant
(equals to inverse of the element volume). With those choices, the equation admits rigid motions
as solution. The author Dwight (2009) emphasizes that the equations can no longer be thought
of as a model of elasticity, although they behave somewhat similarly. In his results, he has
achieved up to 70% greater mesh rotations in some tests compared to standard linear elasticity
model.

6 NUMERICAL RESULTS

In this section, we present some numerical assessment of the ALE formulation. The first two
problems are manufactured solutions, where the force term g and the boundary force (Neumann
boundary condition) is such that the Navier-Stokes is satisfied. In these tests, the velocity v

n+1/2
h

computed in Eq. (20a) is prescribed by the user, thus the geometry is known and there is no
extrapolation. The last problem is the three dimensional capillary equations. In this test, the
geometry is extrapolated as described in Sec.(4) and geometry-dependent forces are present.

6.1 Manufactured solution I (MS1)

We consider a kind of Couette flow, with ρ = µ = 1, such that the exact solution is given by

u = (x cos(t) + y sin(t), x sin(t)− y cos(t)), (29)
p = x cos(t) + y sin(t), (30)
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Figure 1: Mesh used for the MS1 and MS2 tests. On the left is the initial mesh and on the right
is the mesh at the final state of the simulation.

P+
1 P1

k eu order ep order

3 9.097e-05 – 4.206e-05 –
4 2.275e-05 1.999 1.057e-05 1.991
5 5.688e-06 1.999 2.652e-06 1.995
6 1.422e-06 1.999 6.640e-07 1.997
7 3.555e-07 1.999 1.661e-07 1.999
8 8.889e-08 2.000 4.155e-08 1.999
9 2.222e-08 2.000 1.039e-08 1.999
10 5.556e-09 2.000 2.597e-09 1.999

Table 1: Time convergence of the problem MS1.

where (x, y)
.
= x. Note that u and p are linear in x, so the only source of errors is due the time

discretization. The mesh velocity is chosen to be

v = (x2 sin(t) + y2 cos(t), −xy sin(t) + xy cos(t)), (31)

and the initial mesh is the square [−1.2, 1.2]2 (see Fig. (1)). We have taken the time steps
∆t = 0.1 · 2−k, k = 3, ..., 10, and we have computed the velocity error eu = ‖uh − u‖H1 and
the pressure error ep = ‖ph − p‖L2 errors at time T = 0.1. The choices of T and v are such that
the distortion of the final mesh is comparable to the edge size of the coarsest mesh. As can see
in Tables 1 and 2, all the elements P+

1 P1, P1P1(ASGS) and P2P1 present optimal convergence.

6.2 Manufactured solution II (MS2)

To exercise more terms of the Navier-Stokes equations, we consider a more complex non-
physical flow given by

u = (x2y sin(t), −xy2 sin(t)), (32)
p = x2 cos(t) + y2 sin(t). (33)

Here, we take smaller time steps than previously in order to reach the asymptotic behavior:
∆t = 0.001 · 2−k, k = 3, ...7. The mesh is moved by the same velocity of Eq. (31), but it is
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P1P1(ASGS) P2P1

k eu order ep order eu order ep order

3 7.116e-05 – 4.425e-05 – 6.442e-05 – 3.292e-05 –
4 1.782e-05 1.997 1.112e-05 1.991 1.611e-05 1.999 8.230e-06 2.000
5 4.460e-06 1.998 2.788e-06 1.996 4.027e-06 1.999 2.057e-06 2.000
6 1.115e-06 1.999 6.981e-07 1.998 1.007e-06 1.999 5.144e-07 2.000
7 2.789e-07 1.999 1.746e-07 1.999 2.517e-07 2.000 1.286e-07 2.000
8 6.974e-08 1.999 4.368e-08 1.999 6.294e-08 2.000 3.215e-08 2.000
9 1.743e-08 1.999 1.092e-08 1.999 1.573e-08 2.000 8.037e-09 2.000

10 4.359e-09 2.000 2.730e-09 1.999 3.934e-09 2.000 2.009e-09 2.000

Table 2: Time convergence of the problem MS1.

P1P1(ASGS) P2P1

k eu order ep order eu order ep order

3 2.682e-07 – 1.077e-04 – 2.478e-07 – 1.211e-04 –
4 6.702e-08 2.001 2.693e-05 2.000 6.194e-08 2.000 3.027e-05 2.000
5 1.674e-08 2.000 6.733e-06 2.000 1.548e-08 2.000 7.569e-06 2.000
6 4.184e-09 2.001 1.683e-06 2.000 3.870e-09 2.000 1.892e-06 2.000
7 1.044e-09 2.002 4.205e-07 2.000 9.674e-10 2.000 4.729e-07 2.000
8 2.603e-10 2.004 1.049e-07 2.002 2.416e-10 2.001 1.181e-07 2.001

Table 3: Time convergence of the problem MS2.

multiplied by a factor of 50 to compensate the small time step. Unlike what happens in MS1, the
solution (32)–(33) is not represented exactly by any spatial discretization. In order to compute
only the temporal error, we subtract the solution from a reference solution uref computed by
the Richardson extrapolation of the obtained solutions sequence. Thus, we redefine the errors
to

eu = ‖uh(·, T )− uref (·, T )‖∞ , ep = ‖ph(·, T )− pref (·, T )‖∞ . (34)

Table 3 shows the convergence for P1P1(ASGS) and P2P1. We can observe that both elements
still with second order convergence for both velocity and pressure, besides the theoretical stud-
ies of Heywood and Rannacher (1990) that predicted only first order of converge for pressure.

6.3 Spreading droplet

Herein, a spreading droplet in a total wetting regime is considered. In this test all capillary
terms in Eq. (20a) are present: surface tension, surface dissipation, elastic contact line force
and concentrated contact line dissipation. Clearly, all of them depends on the geometry. The
purpose is to check whether the extrapolation of the mesh velocity affects the convergence of
the full Crank-Nicolson. The chosen parameters are: ρ = 1, µ = 0.1, γ = 0.01, β = ζ = 0.001,
g = (0,−1, 0) and θs = 0 (total wetting). The drop is initially a hemisphere of radius one.
Taking advantage of the problem symmetry, only 1/4 of the drop is discretized by the mesh.
As in previous test, we extrapolate a reference solution to computed the convergence. We have
taken the time steps ∆t = 0.01·2−k, k = 1, 2, 3, 4, 5, 6 and the errors have computed at T = 0.3.
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k eu order ep order evol order

1 1.041e-04 – 6.063e-05 – 2.776e-06 –
2 3.505e-05 1.570 1.834e-05 1.724 6.887e-07 2.011
3 1.089e-05 1.687 5.283e-06 1.795 1.714e-07 2.006
4 3.122e-06 1.803 1.451e-06 1.864 4.278e-08 2.003
5 8.444e-07 1.886 3.879e-07 1.903 1.068e-08 2.001
6 2.205e-07 1.937 1.010e-07 1.941 2.669e-09 2.000

Table 4: Three dimensional droplet time convergence using the element P2P1.

t = 0.0 t = 4.0 t = 10.0

t = 18.5 t = 24.5 t = 28.5

Figure 2: Some frames of the simulation of the spreading droplet in a total wetting regime,
where the color scale represents the velocity magnitude (blue corresponds to zero).

Table 4 shows the temporal convergence of the simulation using the P2P1 element. We also have
included the relative volume error evol in this table, computed as

evol =
|Volumefinal − Volumeinitial|

Volumeinitial
. (35)

One can note that quadratic convergence is maintained for velocity, pressure and volume despite
the extrapolation and all geometry-dependent forces. An illustration of the simulated droplet
can be found in Fig. (2).

7 CONCLUSION

We have presented an ALE-FEM formulation to solve capillary equations. We show that sec-
ond order temporal convergence can be obtained by the ALE formulation in non-conservative
form using an extrapolated Crank-Nicolson method. Details of the implementation, often miss-
ing or dispersed in the literature, have been presented here. We have validated our code by
simple benchmarks and the obtained results shows the applicability of the presented formula-
tion.
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