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Abstract.
It is well known that openFoam has become a very popular tool for research work in different fields

and particularly, in fluid dynamics. But, it is also known its lack of detailed documentation support-
ing solvers made using the set of libraries provided by openFoam. Therefore, it becomes necessary to
establish appropriate verifications that can be useful to users going for instance, through the selection
of equations discretization schemes from fvSchemes libraries and of solution solvers from fvSolutions
libraries, to be later applied in the simulation of a given specific problem. With this purpose, executable
solvers available in openFoam 1.7 version to solve supersonic air flow problems are tested. Two different
approaches have been taken in developing numerical methods to solve problems in transport phenomena
at all Mach numbers and traditionally, they have been referred to as pressure-based and density-based
methods. In this work, the advantages or disadvantages in applying any one of these methods, are ad-
dressed. To accomplish the proposed tasks, 2D and axisymmetric numerical simulations of well posed
problems that have either an analytical solution or available experimental data to compare with, are
performed.
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1 INTRODUCTION

The finite volume numerical solution of compressible fluid flow equations can be addressed
using different approaches i.e, pressure based and density based solvers with the corresponding
governing equations solved either in segregated or coupled manners. Within openFoam both
approaches are implemented, for instance, the density based rhoCentralFoam and the pressure
based sonicFoam. The main aim of this work is to test the capabilities of these two solvers
by the simulation of particular types of compressible fluid flows: the supersonic wedge or
ramp, the supersonic diamond airfoil, the two dimensional and the axially symmetric blunt
bodies. In the environment that openFoam can display with some solvers, it is possible to select
at run time if it will or will not consider the molecular dynamic viscosity and/or turbulence
effects on the simulation. Additionally, the numerical scheme for each term in the governing
equations can be selected, thus offering the possibility of choosing the best option according to
the nature of the problem. openFoam treats coupled equations using a segregated approach, in
which equations are formulated for each dependent variable and solved sequentially. Thus, any
vector equation is solved by solving each component as a scalar equation, with the possibility
of applying iterations over the system of equations until convergence is achieved. Provided that
the coupling between the components is not strong, this procedure is quite acceptable (Weller
et al., 1998).

In sonicFoam, a non iterative method for handling the coupling of implicitly discretized
time dependent fluid flow equations is utilized. The method, known as PISO (for pressure
implicit with splitting of operators), is based on the use of pressure and velocity as dependent
variables and is applicable to both the incompressible and compressible versions of the transport
equations. The main feature of the technique is the splitting of the solution process into a series
of steps where operations on pressure are decoupled from those on velocity. With the split, sets
of equations being amenable to solution by standard techniques are intended to be produced.
The fields obtained after each PISO step, are closer approximations to the exact solution of the
difference equations with a formal order of accuracy depending on the number of operation-
splitting used. The errors decaying rapidly, together with the fact that the stability of the overall
scheme is little impaired by the splitting procedure should allow getting rid of iterations while
retaining the advantage of implicit differencing, namely, the ability to cope with large time steps
(Issa, 1985). In this work the PISO methodology is outlined.

The presence of discontinuities, such as shocks and contact surfaces, in high speed com-
pressible flows requires numerical schemes that can capture these features while avoiding spu-
rious oscillations. In notable methods that are effective in producing accurate non oscillatory
solutions, the generation of numerical fluxes typically involve Riemann solvers, characteristic
decomposition and Jacobian evaluation, making them complex and difficult to implement on
a mesh of polyhedral cells that have an arbitrary number of faces. However, an alternative
approach exists which does not involve Riemann solvers and can also provide accurate non os-
cillatory solutions using the so called central schemes. These central schemes implemented in
openFoam to be used with rhoCentralFoam, were proposed by (Kurganov and Tadmor, 2000;
Kurganov et al., 2000) and (Greenshields et al., 2010). It shall be pointed out that Romanelli
et al. (2010) , have successfully developed within the openFoam framework, a solver that in-
volve the use of Riemann solvers, but it is not included in the libraries currently provided by
openCFD R©.
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2 GOVERNING EQUATIONS

It is intended to solve the standard governing fluid equations in an Eulerian frame of refer-
ence:

• Mass conservation
∂ρ

∂t
+∇·(ρU) = 0 (1)

• Conservation of momentum (neglecting body forces)

∂ (ρU)

∂t
+∇·(ρUU) = ∇p+∇·τ (2)

where ρ is the mass density, U the fluid velocity, p the pressure and τ is the viscous stress
tensor. Following the assumption proposed by Boussinesq the stress tensor can be represented
by:

τ = 2µdev (D) (3)

In Eq.(3), µ is the dynamic viscosity, D = 1
2
[∇U + (∇U)T] is the deformation gradient

tensor and dev(D) = D− 1
3

tr(D)I is its deviator component. I is the unit tensor.

• Conservation of energy

The corresponding balance equations are written in terms of the total non chemical energy (E)
and the sensible energy (es). These energies are defined by:

es = hs −
p

ρ
=

∫ T

T0

CvdT −RT0/W (4)

E = H − p

ρ
= es +

1

2
U ·U (5)

being hs the sensible enthalpy (hs =
∫ T
T0
CpdT ) and H the total enthalpy (H = hs+ 1

2
U ·U).

Then the energy balance equations can be written:

∂(ρes)

∂t
+∇ · [U(ρes)] +∇ · q + (pI− τ )∇ ·U = 0 (6)

∂(ρE)

∂t
+∇ · [U(ρE)] +∇ · q +∇ · [(pI− τ )U] = 0 (7)

It is assumed that the working gas (air), behaves like one component (frozen mixture com-
position) perfect caloric gas. In this context the following relations are applicable

es =

(
Cp −

Ru

W

)
T = CvT (8)

T =
1

Cv

[
(ρE)

ρ
− 1

2
U ·U

]
(9)

p = ρ
Ru

W
T =

ρ

ψ
(10)
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where ψ is the air compressibility, Ru is the universal gas constant and γ = Cp

Cv
is the ratio of

specific heats at constant pressure and volume, Cp and Cv respectively. Additionally, the heat
flux (q) can be represented solely by Fourier’s law (q = −λT ) where T is the temperature and
λ the conductivity. If τ = 0 and q = 0 , the flow is inviscid and the conservation equations
reduce to Euler’s equations.

Mean quantities conservation equations to be used in compressible flow RANS simulations,
are written in terms of Favre’s mass weighted averages (Favre, 1969; Wilcox, 1998). Any
dependent variable f can be split into mean and fluctuating components by writing f = f̃ + f

′′ .
However, in Favre’s particular way of averaging the product ρ̃f ′′ = 0 (rather than f ′′ = 0 itself)
and consequently, the mean value becomes

f̃ =
ρf

ρ̄
(11)

Using Favre’s way of making averages the instantaneous conservation equations can be writ-
ten as follows

• Mass

∂ρ̄

∂t
+∇ · (ρ̄Ũ) = 0 (12)

• Momentum

∂(ρ̄Ũ)

∂t
+∇ · [Ũ(ρ̄Ũ)] +∇p̄−∇ ·

(
τ + τt

)
= 0 (13)

where τt = 2µtdev(D̃) . It is now possible, to introduce an effective µeff = µ + µt if the
molecular viscous stress tensor is constructed using the mean deformation gradient tensor D̃ ,
and the turbulent dynamic viscosity µt needed to build the turbulent Reynolds stresses, has been
evaluated. This evaluation can be accomplished defining a turbulence model.

• Energy
∂(ρ̄ẽs)

∂t
+∇ · [Ũ(ρ̄ẽs)]−∇ · (αeff∇h̃s) + p̄∇ · Ũ = 0 (14)

The effective thermal diffusivity (αeff = α+αt) include both, the local mean molecular and
the turbulent. The sensible enthalpy is calculated as h̃s = ẽs + p̄

ρ̄
.

∂(ρ̄Ẽ)

∂t
+∇ · [Ũ(ρ̄Ẽ)]−∇ · (αeff∇h̃s) +∇ · (p̄Ũ) = 0 (15)

from the definition of total energy the sensible enthalpy can be calculated as h̃s = Ẽ + p̄
ρ̄
−

1
2
Ũ · Ũ. Notice that in both energy equations the term associated with the molecular viscous

heating has been neglected.

3 COMPUTATIONAL METHODS

The two main differences between sonicFoam and rhoCentralFoam are: the use of pressure
and velocity as dependent variables through the PISO method in sonicFoam, and the use of an
alternative approach to Riemann solvers based on central-upwind schemes in rhoCentralFoam.
Both computational solvers schemes will briefly be described next.
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3.1 The sonicFoam

The required pressure equation to be used in sonicFoam, may be derived from the differential
form of the momentum and continuity equations. This practice, however has its disadvantages,
since it is not easy to ensure that all terms in the pressure equation are discretized in a man-
ner consistent with the discretisation of the corresponding terms in the parent equations. As a
consequence of this inconsistency, the pressure thus obtained may not always yield a velocity
field which satisfy both the momentum and continuity equations simultaneously. Since satis-
faction of the continuity equation is a basic requisite of the solution of the pressure equation,
the above mentioned incompatibility is unacceptable. Alternatively the pressure equation may
be derived from the discrete forms of the momentum and continuity equations (Issa, 1985). It
is this practice which has here been adopted.

The transport equations stated above are now expressed in finite difference form. There
are numerous ways of representing the spatial and temporal derivatives in the parent equations
(momentum and continuity), however the discretized equations are here formulated using the
Euler implicit difference scheme Then, for compressible flows the governing equations Eq.(1),
Eq.(2) and Eq.(7) may be expressed in difference form for each mesh point as

1

∆t
(ρn+1 − ρn) + (ρui),

n+1
i = 0 (16)

1

∆t

[
(ρuj)

n+1 − (ρuj)
n
]

= −Sn+1
ij,i − (p),n+1

j (17)

1

∆t

[
(ρE)n+1 − (ρE)n

]
+ (ρEui),

n+1
i = −(pui),

n+1
i −(τijui),

n+1
j (18)

where n and n + 1 denote successive time levels. Sij,i stands for the finite difference rep-
resentation of the convective and diffusive fluxes of momentum. The operator ( ),i is the finite
difference equivalent to ∂

∂xi
.In order to increase stability and accuracy, Sij,i is split into diagonal

(D) and non diagonal (N) terms (Chung, 2010).

Sij,i = S
(D)
ij,i + S

(N)
ij,i = A

(D)
ji ui + SDij.i (19)

In the PISO scheme, the conservation of mass has to be satisfied within predictor-corrector
steps. The predictor-corrector steps are, after (Chung, 2010), as follows

3.1.1 Two-stage scheme

Momentum predictor
The equation for momentum (Eq.(17)) is solved in this step implicitly, using old time pressures
and density, as (

δij
4t

+
A

(D)
ji

ρn

)
(ρnu∗i ) = −S(N)

ij,i − pn,j +
ρnuni
4t

(20)

The solution of this equation yields u∗i .

Mecánica Computacional Vol XXXI, págs. 2939-2959 (2012) 2943

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Momentum corrector step
The momentum equation is now written in the explicit corrector form(

δij
4t

+
A

(D)
ji

ρn

)
(ρ∗u∗∗i ) = −S∗(N)

ij,i − p∗,j +
ρnuni
4t

(21)

which by subtracting Eq.(20) from it, can be rewritten in incremental form as

ρ∗u∗∗i − ρnu∗i = −

(
δij
4t

+
A

(D)
ji

ρn

)−1

(p∗ − pn),j (22)

The continuity equation is now taken in the form

(ρ∗u∗∗i ),i = −
1

4t
(ρ∗ − ρn) (23)

Differentiating Eq.(22) and using Eq.(23) it is obtained( δij
4t

+
A

(D)
ji

ρn

)−1

(p∗ − pn),j


, i

= (ρnu∗i ),i +
1

4t
(ρ∗ − ρn) (24)

Using the equation of state (Eq.(10)) in the form ρ = pψn the Eq.(24) becomes( δij
4t

+
A

(D)
ji

ρn

)−1

(p∗ − pn),j


, i

− ψn

∆t
(p∗ − pn) = (ρnu∗i ),i (25)

This is the pressure equation which, when solved yields the p∗ field. The equation of state can
then be used to determine the density ρ∗ , and the Eq.(22) to compute u∗∗i .

The energy predictor step
The energy equation (Eq.(18)) may now be solved in the implicit form(

1

∆t
+
B(D)

ρ∗

)
(ρ∗E∗) = −(ρEui)

∗(N)
, i − (ρ∗u∗∗i ),i +(τiju

∗∗
i )i +

ρnEn

∆t
(26)

with B(D) being the diagonal component of the convective term. The value T ∗ can now be
evaluated from E∗ and u∗∗i .

Second momentum corrector step
For this step the momentum equation is(

δij
∆t

+
A

(D)
ji

ρ∗

)
(ρ∗∗u∗∗∗i ) = −S∗∗(N)

ij,i − p∗∗, j +
ρnuni
∆t

(27)

which in incremental form becomes

ρ∗∗u∗∗∗i − ρ∗u∗∗i =(
δij
∆t

+
A

(D)
ji

ρ∗

)−1 [
−S∗∗(N)

ij,i + S
∗(N)
ij,i − Aij

ρ∗ − ρn

ρn
u∗∗i − (p∗∗ − p∗),j

]
(28)
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By combining with the continuity relation

(ρ∗∗u∗∗i ),i = −
1

∆t
(ρ∗∗ − ρ∗) (29)

the following pressure equation is obtained( δij
∆t

+
A

(D)
ji

ρ∗

)−1

(p∗∗ − p∗),j


, i

− ψ∗

∆t
(p∗∗ − p∗) =

( δij
∆t

+
A

(D)
ji

ρ∗

)−1 {(
−S∗∗(N)

ki,k

+S
∗(N)
ki,k

)
− Aji

(
ρ ∗ −ρn

ρn

)
u∗∗i

}]
, i

+ (30)

p∗

∆t
(ψ∗ − ψn)

Notice that in arriving at the last equation the following equation of state has been invoked

ρ∗∗ = p∗∗ψ∗ (31)

Solution of Eq.(30) yields p∗∗, while Eq.(31) and Eq.(28) are used to evaluate ρ∗∗ and u∗∗∗,
respectively, which together with T ∗ are used to represent the field values at the new time level
n + 1. The formal order of accuracy of the two-stage scheme developed is second order (in
discretisation errors) (Issa, 1985). To achieve a higher formal order an additional correction
stage has to be introduced to the steps presented above. This implies that the T ∗ , u∗∗∗i , p∗∗

and ρ∗∗ fields have to be again updated. The procedure to be followed is given by (Issa, 1985;
Chung, 2010)

3.2 The rhoCentralFoam

In compressible fluid flows, properties are not only transported by the flow, but also by the
propagation of waves. This requires the construction of flux interpolations that take into account
that transports can occur in any direction. Since the interpolations are from neighboring cell
values to a given face only, the (Kurganov and Tadmor, 2000), and (Kurganov et al., 2000)
methods can be applied.

The convective terms of the conservation equations listed in section 2 and applicable to
rhoCentralFoam, are of the form ∇ · [Uρ], ∇ · [U(ρU)], ∇ · [U(ρE )] and ∇ · [Up]. Each is
integrated over a control volume and linearized as follows∫

V

∇ · [UΨ] dV =
∑
f

[Sf ·Uf ]Ψf ≈
∑
f

φfΨf (32)

where
∑

f denotes summation over all faces and φf = Sf · Uf is the volumetric flux, i.e.
the volume of fluid flowing through the face per second. To obtain Ψf by splitting the flux in
two directions, namely outgoing and incoming to the face “owner” cell, the following scheme
is used ∑

f

φfΨf =
∑
f

[αφf+Ψf+ + (1− α)φf−Ψf− + ωf (Ψf− −Ψf+)] (33)
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where f+ and f− denote directions coinciding with the directions +Sf and −Sf , respec-
tively. The first two terms on the right hand side of Eq.(33) are flux evaluations in the f+ and f−
directions. The third term is required in cases where the convection term is part of a substantial
derivative, e. g. ∂(ρui)

∂t
+∇ · [U(ρui)]. It is an additional diffusion term using a volumetric flux

ωf based on the maximum speed of propagation of any discontinuity that may exist at a face
between values interpolated in the f+ and f− directions (Greenshields et al., 2010).

Volumetric fluxes associated with the local speed of propagation can be calculated as follows:

ϕf+ = max
(
af+ | Sf | +φf+ , af− | Sf | +φf− , 0

)
(34)

ϕf− = max
(
af+ | Sf | −φf+ , af− | Sf | −φf− , 0

)
(35)

where, af± =
√
γRu

W
Tf± are the speeds of sound of the gas at the face, outgoing and in-

coming to the owner cell. If in Eq.(33) the weighted coefficient of f+ and f− contributions is
α = 0.5 , the scheme is termed central. Schemes on which the weighting is biased in the up-
wind direction by means of the factor α =

ϕf+

(ϕf+
−ϕf− )

, are termed central upwind. The diffusive
volumetric flux term ωf is determined according to (Greenshields et al., 2010), as

ωf =

{
αmax(ϕf+ , ϕf−) for Kurganov and Tadmor scheme

α (1− α) (ϕf+ + ϕf−) for Kurganov, Noelle and Petrova scheme (36)

To switch between low and high order schemes, the interpolation procedure uses a flux lim-
iter function β(r) , where r represents the ratio of successive gradients of the interpolated vari-
able (constrained to r ≥ 0 ). The van Leer, Minmod and van Albada limiter functions given
by

VanLeer r+|r|
1+r

VanAlbada r+r2

1+r2

Minmod max (0,min (1, r))

Table 1: VanLeer, VanAlbada and Minmod limiter functions

were selected for the f+ and f− interpolations of all flow variables. For example, the f+

interpolation of Ψ is simply evaluated according to

Ψf+ = (1− gf+)ΨP + gf+ΨN (37)

where gf+ = β(1−wf ). Subscripts P andN indicate the face owner cell and the neighboring
cell, respectively. The weighting coefficient wf = |Sf · dfN| / |Sf · dPN| , expresses that the
vector d connects the centroid of the owner cell P to that of neighboring cell N and the vector
dfN connects the centre of the face to the centroid of the cell N (Fig.(1)).
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Figure 1: Finite volume discretization

Gradient terms present in the fluid governing equations are integrated over a control volume
and discretized as follows ∫

V

∇Ψ dV =

∫
S

dSΨ ≈
∑
f

SfΨf (38)

In gradients terms, the Kurganov and Tadmor, and Kurganov, Noelle and Petrova schemes
split the interpolation procedure into f+ and f− directions according to∑

f

SfΨf =
∑
f

[
αSfΨf+ + (1− α) SfΨf−

]
(39)

The f+ and f− interpolation uses the limiter previously described. In this work, the rhoCen-
tralFoam is tested as a solver for inviscid supersonic flow problems. Therefore, the discretiza-
tion of Laplacian terms with diffusion coefficient is not presented.

4 TEST CASES

Here are presented four test cases to study the performances of the selected solvers sonic-
Foam and rhoCentralFoam, with simulations in supersonic flow, The first case is a supersonic
flow over a wedge, the second one the flow over a supersonic diamond airfoil and the last two
are flows over a two dimensional and axially symmetric blunt bodies. In all cases comparisons
with available analytical or numerical solutions will be presented.

4.1 Wedge

As first glance to the behavior of the solvers sonicFoam and rhoCentralFoam in handling
supersonic flow problems, the simple wedge (Fig.(2)) is considered. The free stream or inlet
conditions are denoted by subscript∞ and the conditions downstream the wave by subscript 2.
Solvers quality are in this case determined by the accuracy with which the shock angle (θs) and
downstream flow conditions for a given wedge angle (θw), are predicted. The wedge angle is
chosen 15◦ and the case is solved for a set of Mach numbersM∞ = [1.65, 1.75, 2, 2.25, 2.5, 3, 3.5].
The analytical solution of this problem is well known and it can be found in a wide range of
bibliography (Anderson, 2004)
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Figure 2: Wedge configuration

A mesh with 50000 hexahedral cells is used in the simulation. For the downstream flow
region or outlet it is imposed the waveTransmissive boundary property. This boundary property
is considered appropriate since account for of all incoming waves and does not permit any
reflection. (for more details see (Poinsot and Lelef, 1992)). The free stream pressure and
temperature are taken as T∞ = 270 K and p∞ = 100 Kpa.

As it was early mentioned all computation for this case will be compared with values ob-
tained from the oblique shock theory, they are: downstream average Mach number, wave an-
gle, pressure and temperature ratios as function of all free stream Mach numbers listed above.
From Fig.(3) it can be observed that in a global sense all quantities of interest obtained with
rhoCentalFoam show equal or better accuracy that those calculated by sonicFoam. However
temperature values computed with sonicFoam are in poor agreement when compared with an-
alytical predictions, and as the Mach number increases the disagreement becomes greater. On
the other hand, the numerical simulation with rhoCentralFoam offers good approximation and
apparently, regardless of M∞.
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Figure 3: Downstream Mach number, wave angle, pressure and temperature ratios

Figure 4: Positioning, pressure and temperature ratios
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Fig.(4) shows pressure and temperature ratios across the shock, obtained with rhoCentral-
Foam and sonicFoam and are compared with analytical solutions. Both solvers give good results
for the shock position, but again rhoCentralFoam provides the best approximation. Notice the
computed temperature differences and the oscillations induced by sonicFoam. These oscilla-
tions are practically absent in the rhoCentralFoam calculations.

4.2 Diamond Airfoil

The test case simulate a supersonic flow over a diamond type airfoil shown in Fig.(5).

Figure 5: Diamond airfoil configuration

Here θw is the wedge angle of the airfoil, α the angle of attack, and the free stream flow
properties are those with ∞ subscript. By making a qualitative analysis of the flow around the
body for α > 0, as Fig.(6) shows, it is expected:

• between regions I and II; expansion fan

• between regions II and III; expansion fan

• between regions I and IV; shock wave

• between regions IV and V; expansion fan

• between regions III and VI; shock wave

The exception is between regions V and VI, where the type of flow can be set only by
calculations. Therefore going from regions I to II, II to III and IV to V, it will be seen a velocity
increase, and decreasing density, pressure and temperature. The opposite will be for regions I
to IV and III to VI. All these changes in flow velocity and flow states, can be calculated using
Prandtl-Meyer expansion and oblique shock theories. In region VI should appear a slip line
through which there are differences in velocity, but not in pressure. This is due to the fact that
in arriving to region VI by the upper side, not necessarily the same values are obtained when
the arriving by the lower side.
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Figure 6: Flow field regions

The analysis of this problem is restricted to an angle of attack of 15◦ and a wedge angle of
10◦. To run the case with sonicFoam a mesh with 285300 cells is required, while rhoCentral-
Foam does the same run and obtain the same results, utilizing a mesh of 86300 cells. In Table.(2)
are presented the Mach number and pressure relations for each region defined in Fig.(6).

Region Analytical Solution sonicFoam rhoCentral
M Pr/P1

1 M Pr/P1 M Pressure
II 3.27 0.67 3.28 0.65 3.27 0.66
III 4.78 0.09 4.78 0.086 4.8 0.087
IV 1.73 4.88 1.88 4.85 1.71 4.86
V 2.48 1.51 2.47 1.33 2.46 1.56

Table 2: Diamond airfoil pressure ratio and Mach number

From Table.(2) it is observed that in a global sense the predictions of both solvers are of
good quality, but from the computational cost point of view, it must be taken into account that
the mesh needed to obtain good results with sonicFoam has around 3.3 times more cells than
used with rhoCentralFoam. In addition it can be seen that the pressure computed in region V
by sonicFoam shows the highest percent of error (12%).

1Subscript r makes reference to regions I,II,...V
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Figure 7: Flow field variables predictions with rhoCentralFoam

In Fig.(7) are shown Mach number, pressure, temperature, and entropy fields predicted with
rhoCentralFoam, which are in agreement with the above written expectations. In the Mach
number field are clearly seen shock waves and expansion fans. Also from Mach, pressure and
temperature fields it can be observed that between region V to VI there is an expansion fan and
between regions III and IV there is a shock. Finally from the entropy field it can be conclude that
the computation does not violate the entropy behavior through discontinuities and continuous
waves. Notice that in region VI the slip line is visible, and the entropy field confirm that its
behavior is consistent with the theory in the sense that entropy shows a discontinuity but the
pressure is constant.

4.3 Flow over a two dimensional blunt body

The next analysis related to performances of selected openFoam solvers, applies to the su-
personic flow around a 2D blunt body. The contour of this blunt body is described by the
relation:

f(x) = x−0.5 for 0 ≤ x ≤ 1 (40)

The problem is solved using two meshes, being each one constructed using a single block of
hexahedral cells. One mesh has 45000 cells and the other 72000 cells, the mesh configuration
can be seen in Fig.(8). The free stream conditions are the same that in (Brooks and Powers,
2004), M∞ = 3.5 , T∞ = 1 and p∞ = 1 (values corresponding to a normalized air).
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Figure 8: Two dimensional blunt body mesh configuration

The blunt body problem is solved over the above described meshes by using the Minmod,
van Leer and van Albada limiter functions. In Fig.(9) and Fig.(10) are shown contour plots for
Mach number and pressure fields obtained using each one of the limiters. From these figures it
can be seen that the Minmod limiter gives a more diffusive description of the shock, the van Leer
and van Albada limiter functions reduce shock diffusivity, but have shown a tendency to induce
oscillations in the pressure field calculations. The van Albada limiter gives the better definition
of the shock wave, but oscillations in the pressure field are stronger. The described behavior,
provide an indication that the best balance between free oscillations pressure calculations and
shock wave definition is obtained by using the van Leer limiter function. The impact pres-
sure ratio predicted from the classical normal shock theory is Po

P∞
= 16.24 (Anderson, 2004).

Numerical predictions for each of the considered limiter functions are shown in Table.(3).

β(r) Impact Pressure %Error
VanLeer 16.21 0.18
Minmod 16.34 0.6

VanAlbada 16.22 0.12

Table 3: Impact pressure error (Mesh1)
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Figure 9: Mach contour lines (Mesh1)

Figure 10: Pressure contour lines (Mesh1)

In Fig.(11) calculation of entropy fields corresponding to each of the limiters listed in Ta-
ble.(1), are shown. From this figure it is clear that the computations satisfies the entropy changes
across the curved shock wave, hence the solution can be considered correct.
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Figure 11: Entropy fields (Mesh1)

The pressure and Mach contour plots for the mesh with the larger number of cells can be
seen in Fig.(12) and Fig.(13). From these figures it can be observed that the mesh refinement
tends to reduce diffusivity shown in previous fields prediction by using the Minmod limiter,
and oscillations practically disappear in pressure calculations using van Albada and van Leer
limiters, finally with respect at shock wave capturing, appears that the van Albada limiter gives
the better resolution 2.

2The ability of the simulation procedure to compute shock-body distance has been verified running cases on
which Billig’s correlations is applicable (Billig, 1967). Greater found discrepancies are of the order of 6%
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Figure 12: Mach contour lines (Mesh2)

Figure 13: Pressure contour lines (Mesh2)

4.4 Flow over an axially symmetric blunt body

Here is presented the numerical simulation of the flow around an axially symmetric blunt
body whose generatrix is the contour (Eq.(40)) of the previous two dimensional blunt body.
The results of this simulation being more amenable to compare with Newtonian theory results
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(Anderson, 2006). The inlet flow conditions are the same used in the two dimensional blunt
body: M∞ = 3.5 , T∞ = 1 and p∞ = 1 (after selection of a normalized gas).

Figure 14: Axisymmetric blunt body mesh configuration

The axisymmetric mesh configuration (Fig.(14)), is constructed assuming symmetry about
the center line and using side patches of wedge type (OpenCFD-Ltd, 2010). It has 24500
hexahedral cells. Since the van Leer limiter provide good behavior about shock capturing and
oscillations free pressure fields in the two dimensional blunt body case, it was also used here.

Figure 15: Pressure contour lines
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From Fig.(16), it is seen that pressure coefficients predicted by rhoCentralFoam and New-
tonian theory are in fair agreement. Notice that in this calculation the impact pressure error is
1.6%.

Figure 16: Pressure coefficient

5 CONCLUSIONS

As a comprehensive conclusion of this study, it can be stated that rhoCentralFoam performs
better than sonicFoam in handling supersonic flow simulations. This conclusion, reached after
the consideration of several case studies, is mainly supported by the use in rhoCentralFoam of
the central-upwind schemes proposed by Kurganov and others, being competitive with the best
developed schemes involving Riemann solvers and, in addition, is simpler and well suited for
the construction of flux interpolations which must comply with the premise that in compressible
flows, properties are not only transported by the flow velocity but also by the propagation of
waves. On the other hand, sonicFoam developed as pressure based solver uses the PISO method,
originally designed for incompressible flow and later patched by Issa and others with extra steps
to extend its application to compressible flows. Thus, to obtain correct results, it is needed to
preserve the coupling pressure-density through the equation of state and for this reason, the
energy equation must be added to PISO loops. However, still remains as PISO main feature
the decoupling of pressure from velocity, but in supersonic flows where interactions between
local quantities are totally dominant, the PISO approach may not be the best choice, if there is
any. A fundamental limitation of density based solvers exist close to the incompressible limit
(M < 0.3). But in these low speed cases, with rapidly changing temperature distributions,
strong density variations (e. g., chemically reacting flows) and hence compressibility effects
are manifested, the extended PISO technique has proved to be useful.

From the numerical simulations it has been found that sonicFoam may need as much as
three times more cells than rhoCentralFoam to obtain results of comparable quality. When
the number of cells is the same, the computer time of sonicFoam is already greater and the
results may not properly describe the physical solution. Regarding rhoCentralFoam, it can be
stated that the van Leer limiter compared to Minmod and van Albada limiters, provides the best
performance balance accounting for oscillations free fields, shock capture, required number of
cells and computational cost.
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