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Abstract.
Natural convection heat transfer associated to fluid-dynamics phenomena has been extensively studied

in many applications of scientific and industrial areas. Numerous benchmarks provide numerical and
experimental data of these phenomena in a wide range of Rayleigh (Ra) numbers.
Three dimensional high Ra number regimes are particularly challenging to simulate due to instabilites
sensitivity, need of correction of turbulence modeling and so on. The literature on this topic is scarce. In
this paper Fluent and OpenFOAM codes have been used to assess the Boussinesq approximation for a
wide range of Ra numbers (103− 108) for two dimensional (square cavity) and three dimensional (cubic
cavity) cases. High Ra number cases are particularly discussed showing model limitations and code
capabilities to cope the natural convection phenomena. Results are compared with classical benchmark
cases available in the literature, finding excellent agreement with both experimental and numerical data.
Underlying theoretical models and implementantion are explained in depth, particularly for OpenFOAM
code serving as a reference.
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1 INTRODUCTION

Natural convection in closed cavities is of great importance in many engineering and sci-
entific applications such as energy transfer, boilers, nuclear reactor systems, energy storage
devices among others

In this sense the buoyancy-driven flow is a reliable case to test and validate computer codes
such as those used in this paper, specifically Fluent R© and OpenFOAM R©. Related to this kind
of problems natural convection in geometrically simple cases is a very good start point for both
experimental and theoretical studies (Ampofo and Karayiannis, 2003).

The thermally driven flow in square cavity with adiabatic top and bottom walls is one of
the classical problems in the heat transfer literature. It is used to test the numerical algorithms
designed for the integration of the Navier-Stokes equations in incompresible recirculating flows
(Le Quéré, 1991). This phenomenon has received considerable attention in numerical simula-
tion due to the complexity of the problem relies on the strong coupling between the continuity
and thermal equations at high Ra numbers.

Related to natural convection in closed cavities, both in laminar and turbulent regimes, there
are two significant benchmark problems, the two-dimensional numerical solution given by De
Vahl Davis (De Vahl Davis, 1983) and its three dimensional counterpart with experimental re-
sults taken from Ampofo et al (Ampofo and Karayiannis, 2003). Regarding the former tt has a
set of numerical results for four values of Rayleigh number, namely 103, 104, 105 and 106 that
were obtained with second-order central diference aproximation in a square cavity filled with
air (Pr = 0.71) in laminar regime.

Although natural convection in enclosures has been extensively studied by several researchers
(Patterson and Imberger, 1980) (Salat et al., 2004) (Dixit and Babu, 2006) both numerically and
experimentally, there aren’t many studies that provide results close to the critical Ra number
where the flux becomes unsteady and close to physically unstable. This work contributes with
a successful set of results at high Ra number (107 and 108) that could be used as a reference for
future works. The agreement obtained with both codes allows to conclude that more complex
thermal fluid dynamics problems may be analyzed with a reasonable accuracy. Moreover this
paper may contribute as a reference for future validation of such a problems.

Regarding three dimensional cases, the experimental data for turbulent natural convection in
a air filled cavity (0.75 m high × 0.75 m wide × 1.5 m deep) with a Ra = 1.59 × 109 give
worthy results at high Ra in terms of flux, thermal and turbulent quantities which are useful to
compare with the results of turbulence models implemented in Fluent R© and OpenFOAM R©. In
the last test the turbulence is modeled by means of LES Smagorinsky Model as proposed by
Smagorinsky (Smagorinsky, 1963).

Several researchers had published their studies at low Reynolds turbulence regime in enclo-
sures (Ampofo and Karayiannis, 2003), (Tian and Karayiannis, 2000) and (Peng and Davidson,
2000). As an extension, in this paper we present numerical results as good as those published
earlier with the target put in applying such a solvers for more complex applications in the near
future.
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2 MATHEMATICAL FORMULATION

In natural convection problems the driven force is given by changes in fluid density due to
temperature evolution. Even though the thermodynamical properties of the fluid are assumed
to be constant, buoyancy body force term in the momentum equation are added allowing to
relate density changes to temperature. This is achieved through the Boussinesq aproximation
that couple the energy and the momentum equations. This aproximation is hold under certain
hypothesis of small temperature differences.

The governing equations for newtonian incompresible fluid under laminar steady state flow
can be written as in Equations 1-4:
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Under the hypothesis above mentioned the Boussinesq approximation can be written as in
Equation 5 (Arpaci and Larsen, 1984).

Fb = gβ(T − Tc) (5)

With typical boundary conditions for the square (2D) cavity given by equations 6-9

u(x, 0) = u(x, L) = u(0, y) = u(L, y) = 0; (6)

v(x, 0) = v(x, L) = v(0, y) = v(L, y) = 0; (7)

T (0, y) = Th;T (L, y) = Tc;
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here x and y are horizontal and vertical axis coordinate respectively; u and v are the velocity
components in the x and y directions, T is the temperature, p the pressure and ρ the fluid density.
Using nominal values given by Equations 10-11 a set of dimensionless governing equations can
be derived (Equations 12 -15 ).
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with the non-dimensional boundary conditions given by equations 16-19.

U(X, 0) = U(X, 1) = U(0, Y ) = U(1, Y ) = 0; (16)

V (X, 0) = V (X, 1) = V (0, Y ) = V (1, Y ) = 0; (17)

θ(0, Y ) = 1; θ(1, Y ) = 0;
∂θ
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Note in the above equations that U and V are Peclet numbers in the horizontal and vertical
directions.

3 TWO DIMENSIONAL LAMINAR STEADY STATE MODEL IN SQUARE CAVITY

The problem presented deals with the two-dimensional flow of Prandtl number Pr = 0.71
in a square cavity of side H= 1m. The boundary conditions for the momentum equation are
no slip at all boundaries. Horizontal walls are isolated, and the vertical sides are at diferent
temperatures (Tc < T < Th). This case allows to verify the limit in Ra number where the fluid
configuration becomes unsteady. It was verified that this limit is very close to 2× 108, which is
the transition point widely studied by Paolucci and Chenoweth (Paolucci and Chenoweth, 1989)
and by Le Quéré (Le Quéré, 1991). The main interest of this work is to give accurate solutions
to Ra numbers from 107 to 108 and larger which result in non-trivial cases. Difficulties arise
from the coupling between momentum and energy equations in the transition range of Reynolds
number (Re) between laminar and turbulent regime. Remember that (Re) number is related to
(Ra) number increasing monotonically as approximately a square root.

For simplicity all the tests were run changing the value of gravitational acceleration until
obtain the right Ra number, keeping all the other variables constant. Figure 1 exhibits the ge-
ometry of the cavity.

Simulations were carried out using two grids of 100× 100 and 200× 200 cells respectively
with refinement towards the walls. The refinement is controlled by the code needs as will
be discussed below. The wide range of Ra (Equation 20) numbers was obtained by a constant
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Figure 1: Detail of Cavity simulated, left wall at Th, right wall at Tc, front, back,top and bottom walls are insulated

temperature difference of ∆T = 1K adjusting the gravitational aceleration to supply the desired
Ra .

Ra =
gβL3(Th − Tc)

αν
(20)

where α is the thermal diffusivity and β the thermal expansion coefficient corresponding to
air with Pr = ν/α = 0.71 in Standard Temperature and Pressure conditions.

3.1 Solvers settings

Fluent R© The case was set with a pressure based, segregated, steady solver with Green-Gauss
Cell Based gradient treatment. SIMPLE algorithm was selected for the pressure-velocity cou-
pling with relaxation factors of 0.3 for pressure, 0.7 for momentum and 1 for energy as the
defaults. The pressure was discretized with Standard discretisation based on Rhie and Chow
(Rhie and Chow, 1983) and QUICK was chosen for advection scheme for momentum and en-
ergy discretization.

The residual criteria of convergence were set for absolute residuals (Equation 21) below of
1 × 10−7 for all the variables in all the cases.

Rφ =

∑
cells P |

∑
N aNφN + b− aPφP |∑
cells P |aPφP |

(21)

being aP the center coefficient1, i.e. the contribution of all terms that involves the unknown
at the cell center, aN are the influence coefficients for the neighboring cells, namely the cells
that share a face with the analyzed cell, and b is the contribution of the constant part of the
source term Sc in S = Sc + SPφ and of the boundary conditions.

1See Fluent R© 6.3.26 Users Guide, chapter 25.18.1
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OpenFOAM R© A pressure based, segregated, steady solver (buoyantBoussinesq-
SimpleFoam) was used with SIMPLE algorithm for pressure-velocity coupling with relax-
ation factors of 0.3 for pressure, 0.7 for momentum and 1 for energy. Residuals were reduced
below of 1 × 10−7 for all variables and Gauss QUICK discretisation was set for divergence
terms. Regarding residuals criteria the definition are quite similar, so then similar criteria for
convergence were set. OpenFOAM R© residuals definition lies on scaled residuals theory too,
nevertheless different scaling factor are used, an explanation was given by Jasak (See CFD On-
line OpenFOAM R© Convergence on Segregated Solvers thread) and Márquez Damián and Nigro
(Márquez Damián and Nigro, 2010). The same formulation for the pressure discretisation as
in Fluent was used and it was set by means of Gauss Linear scheme (Peng and Davidson, 2000).

3.2 Results and Discussion

This section is divided as follows: the first part provides a set of solutions at low Ra number
and leaves the more interesting high Ra number case to be analyzed at the end of the section.

The quantities under study are the following:

• [umax(1/2)] : The maximum horizontal velocity on the vertical mid-plane of the cavity
(together with its location).

• [vmax(1/2)] : The maximum vertical velocity on the horizontal mid-plane of the cavity
(together with its location).

• [Nu0] : The average Nusselt number on the vertical boundary of the cavity at x = 0.

• [Numax] : The maximum value of the local Nusselt number on the boundary at x = 0
(together with its location).

• [Numin] : The minimun value of the local Nusselt number on the boundary at x = 0
(together with its location).

Tables 1-4 show both Fluent R© and OpenFOAM R© results for Ra = 103, 104, 105 and 106

compared with the De Vahl Davis (De Vahl Davis, 1983) solutions. Excellent agreement to
experimental data in both results for momentum and energy quantities prove the accuracy of
this approach for this low Ra number range. The horizontal velocity component in the vertical
mid-plane is shown in Figure 2. Here is worthy to note that when Ra number increases the
boundary layer becomes more defined and the maximum values in the velocity get closer to the
walls.

The heat flux in the cavity is characterized for an ascendent movement in the hot wall and
decendent one in the cold wall due to the buoyancy and gravitational acceleration respectively.
In the low Ra cases the heat transfer is driven predominantly by conduction as seen in Figure
3 where the local Nusselt number takes small values. The Nusselt number was computed using
the following expresion 22:

Nu =
hL

κ
(22)
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Table 1: Numerical Solution with Fluent R© and OpenFOAM R© codes

Ra = 103

Fluent OpenFOAM G.V. Davis
h=0.1 h=0.05 h=0.025

umax(x = 0.5) 3.643 3.640 3.427 3.589 3.634
ymax(x = 0.5) 0.817 0.812 0.801 0.811 0.813
vmax(y = 0.5) 3.690 3.700 3,449 3,629 3,679
xmax(y = 0.5) 0.182 0.177 0,193 0,181 0,179
Nu0 1.113 1.109 1.105 1.113 1.116
Numax(x = 0) 1.506 1.505 1.462 1.491 1.501
ymax(x = 0) 0.090 0.001 0.141 0.112 0.087
Numin(x = 0) 0.691 0.691 0.723 0.702 0.694
ymin(x = 0) 1.000 1.000 0.936 1.000 1.000

Table 2: Numerical Solution with Fluent R© and OpenFOAM R© codes

Ra = 104

Fluent OpenFOAM G.V. Davis
h=0.1 h=0.05 h=0.025

umax(x = 0.5) 16.139 16.281 16.243 16.189 16.182
ymax(x = 0.5) 0.817 0.822 0.808 0.820 0.823
vmax(y = 0.5) 19.619 19.547 18.055 19,197 19,509
xmax(y = 0.5) 0.119 0.123 0.139 0.125 0.120
Nu0 2.246 2.222 2.307 2.255 2.242
Numax(x = 0) 3.539 3.538 3.637 3.603 3.545
ymax(x = 0) 0.144 0.085 0.211 0.165 0.149
Numin(x = 0) 0.691 0.691 0.676 0.610 0.592
ymin(x = 0) 1.000 1.000 1.000 1.000 1.000
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Table 3: Numerical Solution with Fluent R© and OpenFOAM R© codes

Ra = 105

Fluent OpenFOAM G.V. Davis
h=0.1 h=0.05 h=0.025 h=0.016 h=0.0125

umax(x = 0.5) 34.469 34.928 40.900 36.460 35.070 34.870 34.810
ymax(x = 0.5) 0.855 0.859 0.846 0.854 0.855 0.855 0.855
vmax(y = 0.5) 68.817 68.878 59.710 62.790 66.730 67.910 68.220
xmax(y = 0.5) 0.064 0.067 0.083 0.075 0.068 0.067 0.066
Nu0 4.535 4.498 4.767 4.716 4.564 4.531 4.523
Numax(x = 0) 7.767 7.765 6.538 7.901 7.905 7.802 7.761
ymax(x = 0) 0.083 0.080 0.218 0.133 0.095 0.087 0.085
Numin(x = 0) 0.691 0.726 1.516 0.797 0.755 0.741 0.736
ymin(x = 0) 1.000 1.000 1.000 0.973 1.000 1.000 1.000

Table 4: Numerical Solution with Fluent R© and OpenFOAM R© codes

Ra = 106

Fluent OpenFOAM G.V. Davis
h=0.1 h=0.05 h=0.025 h=0.016 h=0.0125

umax(x = 0.5) 64.433 64.558 230.22 79.27 67.49 65.81 65.33
ymax(x = 0.5) 0.846 0.851 0.915 0.862 0.854 0.852 0.851
vmax(y = 0.5) 220.970 221.572 213.91 195.44 206.32 214.64 216.75
xmax(y = 0.5) 0.0379 0.0670 0.0670 0.0447 0.0423 0.0396 0.0387
Nu0 8.861 8.786 6.790 9.502 9.270 9.035 8.928
Numax(x = 0) 17.717 17.708 7.959 14.215 17.947 18.255 18.076
ymax(x = 0) 0.0379 0.0404 0.138 0.124 0.0675 0.0523 0.0456
Numin(x = 0) 0.983 0.977 3.853 1.749 1.015 1.020 1.005
ymin(x = 0) 1.000 0.998 1.000 1.000 0.984 1.000 1.000
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Figure 2: Horizontal velocity profiles (U = u/α) at x mid-plane to a) Ra = 103, b) Ra = 104, c) Ra = 105 and
d) Ra = 106
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Figure 3: Local Nusselt on the hot wall at a) Ra = 103, b) Ra = 104, c) Ra = 105 and d) Ra = 106
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a) b)

c) d)

Figure 4: Temperature field θ = T−Tc

Th−Tc
(0− 1) to a) Ra = 103, b) Ra = 104, c) Ra = 105 and d) Ra = 106
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where h is the convective heat transfer coefficient on the wall and κ is the thermal conductivity
of the fluid. Finally Figure 4 gives the temperature profiles for the four cases.

Related to high Ra number tests, steady state results from both codes show excellent agree-
ment and may be used as a reference for coupled equation simulation. Due to the difficulties in
obtaining a converged solution at the beginning of this study, results from previous tests were
used as an initial guess for the higher Rayleigh number cases. First-order divergence scheme
was used as well. Once first-order solution was obtained the calculation was continued us-
ing QUICK interpolation scheme. For the last two-dimentional test (Ra = 108) performed in
OpenFOAM R© it was necesary to refine the grid (200× 200 cells) in order to obtain an accurate
solution with the same residual criteria.

Table 5: Numerical Solution with Fluent R© and OpenFOAM R© codes

Ra = 107

Fluent OpenFOAM P. Le Quéré
h=1/80

umax(x = 0.5) 146.00 145.84 148.58
ymax(x = 0.5) 0.888 0.884 0.879
vmax(y = 0.5) 695.36 704.094 699.236
xmax(y = 0.5) 0.0196 0.0217 0.021
Nu0 16.645 16.502 16.523
Numax(x = 0) 40.619 40.594 39.39
ymax(x = 0) 0.015 0.017 0.018
Numin(x = 0) 1.394 1.365 1.366
ymin(x = 0) 0.990 0.998 1.000

Table 6: Numerical Solution with Fluent R© and OpenFOAM R© codes

Ra = 108

Fluent OpenFOAM P. Le Quéré
h=1/128

umax(x = 0.5) 304.015 299.156 321.876
ymax(x = 0.5) 0.922 0.921 0.928
vmax(y = 0.5) 2199.51 2233.35 2222.39
xmax(y = 0.5) 0.011 0.012 0.012
Nu0 28.52 30.1425 30.225
Numax(x = 0) 96.47 90.294 87.24
ymax(x = 0) 0.0074 0.008 0.008
Numin(x = 0) 2.0536 1.906 1.919
ymin(x = 0) 0.999 0.999 1.000

S. CORZO, S. MARQUEZ DAMIAN, D. RAMAJO, N. NIGRO288

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 5 shows the horizontal velocity profile in the vertical mid-line. These results exhibit
good agreement between both softwares and with benchmark results as shown in the tables 5,
6. The flow is limited to a narrow strip along the wall where the velocity and temperture change
suddenly.
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Figure 5: Horizontal velocity profiles (u = U/α) at x mid-plane to a) Ra = 107 and b) Ra = 108

The local Nu on the hot wall of the cavity is shown in Figure 6. It reaches its maximum at
the bottom of the hot wall because of the thinner thermal boundary layer presented there. As
the thickness of the boundary increases along the flow direction, the localNu drecreases rapidly.

4 TURBULENT NATURAL CONVECTION IN AN THREE DIMENSIONAL CAVITY

The problem to be solved is a test rig of natural convection in a enclosure domain. The cavity
was 0.75m high× 0.75m wide× 1.5m deep, see Figure 8. The hot wall was kept at 50±0.15 ◦C
whilst the cold wall at 10± 0.15 ◦C giving a Ra = 1.59× 109. The horizontal walls were kept
isolated.

The publication of this three-dimensional test (Ampofo and Karayiannis, 2003; Tian and
Karayiannis, 2000) includes several experimental results that allow to do a good estimation
of turbulence quantities. Here we study only mean transport variables and thermal properties
leaving the turbulent correlations for future works.

4.1 Solvers settings

Fluent R© The case was set as in Fluent R© 2D model with a pressure based, segregated, unsteady
implicit Crank-Nickolson formulation with Green-Gauss Cell Based gradient treatment. PISO
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Figure 6: Local Nusselt on the hot wall at Ra = 107 and Ra = 108

a) b)

Figure 7: Temperature field θ = T−Tc

Th−Tc
(0− 1) to a) Ra = 107 and b) Ra = 108
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Figure 8: Detail of Cavity simulated

algorithm was selected for pressure-velocity coupling with relaxation factors of 0.3 for pressure,
0.7 for momentum and 1 for energy. The pressure was discretized with Standard discretisation
and Second order Upwind was set for momentum and energy discretisation equation. The
residuals criteria of convergence was such that reduce the absolute residuals below of 1 × 10−5

for all the variables in all the cases. The turbulence was modeled using Large Eddy Simulation
(LES) taking into account previous work (Peng and Davidson, 2000). Static Smagorisky was
chosen as the subgrid scale model (SGS).

OpenFOAM R© Like in Fluent R© a pressure based, segregated, steady state solver (buoyant-
BoussinesqPisoFoam) with PISO algorithm for pressure-velocity coupling was selected.
Gauss second order upwind discretization was set for pressure and divergence terms. Residuals
were reduced below of 1 × 10−5 for all variables. LES was used to simulate the turbulence
with Static Smagorisky model to estimate the subgrid-scale stresses. The same constants as in
Fluent R© code were selected.

4.2 Results and Discussion

Several works (Penot and Ndame, 1993; Tian and Karayiannis, 2000) pointed out that the
2D approximation of experimental natural convection in cavities should be valid only if the
horizontal aspect ratio (AR) of the cavity is greater than 1.8. The cavity modeled in this paper
has an AR=2, hence, for this reason the mid-section cavity has a two-dimentional behavior and
so these results are reported. It is worthy to note that this assumption is not easely achieved.

Owe to the non-steady character of the flux time-averaged value of all solution variables in
the mid-line (Y = 0.5, Z = 0, 5) and the Nu number in wall line (X = 0, Z = 0, 5) are
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reported. The mean quantities (u,v,T ) were computed by means of Equation 23.

m =
1

N

∑
i

mi (23)

Both Fluent R© and OpenFOAM R© were set to take averages of the transport variables in each
time step. Statistics started when stationary state was achieved. The number of time steps aver-
aged N was chosen with the aim to complete a full cycle in the vertical velocity variation over
the mid-line.

Figure 9 and 10 shows the mean vertical velocity in the mid-plane and the temperature dis-
tribution at the same points. Even though the comparison between numerical and experimental
velocity and temperature profiles reveals discrepancies, the accuracy of the two results presented
in this paper is suitable to be compared with other numerical results cited in the bibliography.
Probably one of the main reasons of this discrepancy could be the adiabatic boundary condition
in the horizontal walls (Tian and Karayiannis, 2000). This boundary condition is experimentally
very hard to set up, specially in air filled enclosures.

The high Ra number give a thin boundary layer where the fluid is dragged by the buoyant
and gravitational effects. Velocity and thermal profiles have a good agreement despite of the
coarse mesh close to the wall employed. The flow is characterized by low Reynolds turbulence
intensity and thermal stratification. From X = 0.08 to X = 0.92, the temperature holds
approximately constant, indicating that the fluid in the core area is nearly stagnant.
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Figure 9: Mid-plane (Y = 0.5, Z = 0, 5) transport properties: a) Vertical velocity profiles (v = V/V o) and b)
Temperature field θ = T−Tc

Th−Tc
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Figure 10: Mid-plane (Y = 0.5, Z = 0, 5) transport properties: a) Vertical velocity profiles (v = V/V o) and b)
Temperature field θ = T−Tc

Th−Tc
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5 CONCLUSIONS

The results presented in this paper reveals a good agreement not only in 2D also in 3D
and for a wide range of Ra numbers. In this sense they can be set as a reference for future
buoyancy-driven tests. In addition the usage of a free software code as OpenFOAM R© and
its comparison against a very well known software as Fluent has been another purpose of the
present work. We prove that it is possible to solve the strong coupling between energy and
momentum equations produced at high Rayleigh numbers. Finally the preliminar 3D results for
low Reynolds turbulence regime seems to be very promissory specially due to the reasonable
good accuracy obtained from the mean values. Probably more work is needed to tune other
turbulence quantities before using such a models in more complex applications like those found
in nuclear power plants.
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