
HPC IN COMPUTATIONAL 
MECHANICS



The world made discrete: from PDE’s 
to computer programs

� General Form of PDE’s for Engineering Systems



Governing Equations in Eulerian Framework
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Parallel FEM Solver for Coupled Viscous 
Flow and Transport



Eulerian Governing Equations

� Multi-phase Darcy-flow in 

Porous Media:
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Governing Equations in Lagrangian Framework

� Equation of Motion for Solids and Structures:



Lagrangian Governing Equations

� Remarks:

courtesy of J. Alves



Arbitrary Eulerian Lagrangian Governing Equations

� Incompressible NS equations in ALE frame moving with 
velocity w:

� Velocity w is conveniently adjusted to Eulerian (w=0), far 
from moving object to Lagrangian (w=u) on the fluid-
structure interface.

� Fluid is considered attached to the body.

� Need to solve extra-field equation to define mesh 
movement: our choice is to solve the Laplacian.

From Felippa, Park and Farhat (CMAME, 2001)



Fluid-structure interaction with free-surface



FEM Discretization

� Good mathematical background and ability to handle 

complex geometries by using unstructured grids



FEM Computing Issues

� FEM is a unstructured grid method 
characterized by:
� Discontinuous data – no i-j-k addressing

� Gather-scatter operations

� Random memory access patterns� Random memory access patterns

� Data dependence

� Minimize indirect addressing is a must 

� Memory complexity O(mesh parameters)



PART I: FE SIMULATION 
CODE



Finite Element Method

� Based on a variational formulation for a given PDE; basis functions 

with local support

� Flexible

� Unstructured grid generation in 3D can be difficult



FE Simulation Code: Major Components

Pre-processing

Input data

Time integration loop

Nonlinear iteration loop 

Form system of linear equations

Solve system of linear equations

End NL loopEnd NL loop

Update time step

Output results

End time loop

Post-processing

Visualization
Complexity O(n4/3), n #unknowns

Optimal solvers require O(n) work per time step, and time accurate integration often implies O(n1/3 ) time steps.



Major Components

� Always ends in a system of linear equations

Discrete problem Algebraic problem

� Often linear system too big to be solved with a direct method based 

on Gauss elimination

� Iterative solvers are preferred for large systems

� HPC allows solving really big systems!



Computational Representation of an Unstructured Mesh

nodal coordinates element connectivity

ndim : number of space dimensions

nnos : number of nodes

nnoel : number of element nodes

nel : number of elements



Meshs, Graphs and Matrices
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Krylov Space Iterative Solution 
Methods

� Iterative methods more used in practice 

for non-symmetric systems Ax=b: GMRESGMRES

�� GMRES solution updateGMRES solution update:   xk = x0 + yk

� yk computed as the best approximation in 

the Krylov space: the Krylov space: 

Km = span[r0, Ar0, A
2r0, … , Ak-1r0]

minimizing the residual

||rk|| = min ||r0+Ay||
y

� In practice applied in cycles

See more in: Y. Saad, Iterative Methods for Sparse Linear Systems, Boston, PWS 
Publishing Company, 1996



GMRES Method

r=b-Ax ,  v 1=r/||r|| ,  tol=||r|| , k=0

While tol >  etol ||b|| and k<kmax do 
k=k+1

For j=1,...,k

hjk =(Av k) T v j

vk+1= Av k - sum(h jk v j ), j=1,...,k

hk+1,k = || v k+1 ||

vk+1 = v k+1 /|| v k+1 ||

e1=(1,0,...,0) T in R (k+1)

Minimize ||tol e 1 - H k yk|| over R (k+1) to 
obtain y k

tol = ||tol e 1 - H k yk||

End while.  



Preconditioning

� GMRES convergence depends on spectra of 

A

� Preconditioning main idea:

MAx = Mb

� M close to A-1 and chosen such asand chosen such as:� M close to A and chosen such asand chosen such as:

– M is simple to build and implement

– M action diminishes the iteration count

� Possible implementations

– Right:  AMy = b

– Left: MAx = Mb

– Left-Right: MAMy = Mb



Main GMRES Operations

� Dot Products 

� Vector updates (SAXPY’s)

y = y + axy = y + ax

� Matrix-vector products (matvec)

� Preconditioning, auxiliary system solve



Common Preconditioning Matrices

� Simplest: M = diag(A)

– easy to implement, slow convergence 

� Nodal Block-Diagonal Preconditioning : 

– M = nodal block-diagonals of A, that is,– M = nodal block-diagonals of A, that is,

block 4x4, i=1,2, … , nnos

� Incomplete Factorization: M = ILU(A)

– Complex, hard to implement in parallel

– Allows different levels of fill-in, ILU(0), ILU(1) …



Nodal Degrees-of-Freedom Reordering

� Matrix profile is directly related to the node (degrees-of-freedom) order

� Reordering algorithms such as Reverse Cuthill Mckee reorder the 

unknowns to reduce bandwidth (profile)

� NP-complete graph problem

basic example

real 
problem



Storing sparse matrices

� Local nature of FEM approximation yields sparse 

matrices, with few nonzero terms (~90% in 3D);

� There are several schemes to store efficiently such 

sparse matrices;

� These schemes store only the nonzero terms in 

compact form;

� We show some of these schemes, discuss the 

related computational issues;



Data Structures are Grid-based

Finite Element 
Mesh

Nodal Graph

node i

EBE, EDE or CSR; all data 

25

row i

K=

EBE, EDE or CSR; all data 
structures lead to problems with 
sparse Jacobian matrices; many 
tasks can leverage off an efficient 
set of tools for manipulating sparse 
data structures



General Ideas on Data Structures

� A proper data structure is crucial to achieve a good performance 

X storage space balance;

� Basic linear algebra kernels (e.g., matvec products) depend on 

the data structure to hold the matrix;

� Compact data structures to store sparse matrices are very 

convenient for direct and iterative linear equation solvers;convenient for direct and iterative linear equation solvers;

� Modern packages for linear equation solving (e.g., Petsc

Trilinos, etc...) often support standard sparse data structures 

(e.g., CSR, BSR).

� Difficulties related to locality of data and impact of multi-core 

procs

� See Petsc web-page: http://www.mcs.anl.gov/petsc/petsc-as/



Sparse Data Structures

� DNS: Dense

� BND: Linpack Banded;

� COO: Coordinate;

� CSR: Compressed Sparse 

Row;

� DIA: Diagonal;

� BSR: Block Sparse Row

� SSK: Symmetric Skyline;

� NSK: Nonsymmetric Skyline;

� JAD: Jagged Diagonal;Row;

� CSC: Compressed Sparse 

Column;

� MSR: Modified CSR;

� ELL: Ellpack-Itpack;

� JAD: Jagged Diagonal;

� EBE: Element-by-Element;

� EDS: Edge-by-Edge



CSR: Compressed Sparse Row

� Stores the assembled matrix

� Supported by most packages;

� Hard to extract performance;

� Easy to build ILU preconditioners;
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Matrix-vector product CSR (SERIAL)

do i = 1, n

k1 = ia(i)

k2 = ia(i+1)-1

y(i) = dotproduct(a(k1:k2),x(ja(k1:k2)))

End do

 1. 0. 0. 2. 0. 1.  2.  3.  4.  5.  6.  7.  8.  9.  10.  11.  12.AA(nnz)= 
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n is the number of lines in A, dotproduct is the scalar product between (a(k1:k2) ) and RHS 
vector.

Level 1 BLAS routine ddot usually  employed in dotproduct

Read more: Williams et al, Optimization of sparse matrix–vector multiplication on emerging 
multicore platforms, Parallel Computing 35 (2009) 178–194
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BSR: Block Sparse Row

� Good for storing block coefficients (as in the case of many nodal degrees-of-

freedom);

� Eventually will store null coeffcients within the blocks;

� More complex to work than CSR

1.  3.    9.  11.  17.   20.
5.  7.   13.  15.  22.   24. 0. 0.2. 4.1. 3.
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EBE: Element-by-Element

� Storage scheme where element coefficients are individually stored;

� As coefficients are stored elementwise, no global (assembled) matrix is 

built, that is, unassembled element contributions are stored;

� Needs specially built preconditioners;

� See more: 

• Hughes, Ferencz, Hallquist, Large-scale vectorized implicit calculations in solid 

mechanics on a Cray X-MP/48 utilizing EBE preconditioned conjugate gradients, 

Computer Methods in Applied Mechanics and Engineering, 61(2):215-248, 1987

• E. Barragy and G. F. Carey, A Parallel Element-by-Element Solution Scheme, 

IJNME, 26, 2367-2382, 1988

• F Shakib, T J R Hughes, Z Johan , A multi-element group preconditioned GMRES 

algorithm for nonsymmetric systems arising in finite element analysis, Computer 

Methods in Applied Mechanics and Engineering, 75: 415-456, 1989.



EBE: Element-by-Element

� Consider the mesh below with triangular elements (3 

nodes/element) with 2 degrees-of-freedom per node (ngl ):

with:
nel  : #elements
nnoel : #nodes per element
ngl  : #degrees-of-freedom per node

t(ngl*nnoel,ngl*nnoel,nel)



EBE matrix-vector product (SERIAL)

do ie = 1, nel

neq1 = lm(1,ie)

neq2 = lm(2,ie)

neq3 = lm(3,ie)

neq4 = lm(4,ie)

...

retrieve and multiply 16 coefs

...

For each element do:

Localize (gather) coefficients from global vector

Do local matvec

Scatter and add result in global vector

Enddo

...

p(neq1) = p(neq1) + ap1

p(neq2) = p(neq2) + ap2

p(neq3) = p(neq3) + ap3

p(neq4) = p(neq4) + ap4

end do



EDS: Edges-by-Edges

� Similar to EBE but here we store coefficients related to edges of the 

global sparse matrix;

� Scatter and add of edge coefficients performed only at matrix-vector 

product, as in EBE scheme;

� Several advantages for simplex elements;

� However, preconditioning can be difficult;� However, preconditioning can be difficult;

� See: 

– F. L. B. Ribeiro and A. L. G. A. Coutinho, Comparison between element, 

edge and compressed storage schemes for iterative solutions in finite 

element analyses, Int. J. Numer. Meth. Engng, 63:569–588, 2005

– R. Lohner, Applied CFD Techniques: An Introduction Based on 

Finite Element Methods, 2nd edition, Wiley, 2008



Computational complexity of sparse matvec data 
with  CSR, EBE, EDS for linear tets grids

10

100

1000

10000

b
y
te

s

EBE

EDS

CSR
10

100

1000

10000

1 2 3 4 5 6

fl
o
p
s

EBE

EDS

CSR

10

1 2 3 4 5 6
ndof

1 2 3 4 5 6

ndof

10

100

1000

1 2 3 4 5 6

ndof

i/
a

EBE

EDS

CSR

from Ribeiro&Coutinho, IJNME, 2005



EDS: Edges-by-Edge (cont.)
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EDS: Edge-by-Edge

� A closer look into  EBE and EDS computational 

complexity:

t(ngl*3,ngl*3,nel) t(ngl*2,ngl*2,nedges)

Data structure Memory Flop i/a 

Element 1056 nnodes 2112 nnodes 1408 nnodes 

Edge 224 nnodes 448 nnodes 448 nnodes 

Linear tets

u-p fully coupled incompressible flow (4 dofs)

nel≈ 5.5×nnodes, nedges≈ 7×nnodes.

Computational cost



EDS matrix-vector product (SERIAL)

do ie = 1, nel

neq1 = lm(1,ie)

neq2 = lm(2,ie)

neq3 = lm(3,ie)

neq4 = lm(4,ie)

Elements (1 degree of freedom)

do ie = 1, nedges

neq1 = lm(1,ie)

neq2 = lm(2,ie)

...

retrieve and multiply 4 coefs.

Edges (1 degree of freedom)

...

retrieve and multiply 16 coefs

...

p(neq1) = p(neq1) + ap1

p(neq2) = p(neq2) + ap2

p(neq3) = p(neq3) + ap3

p(neq4) = p(neq4) + ap4

end do

retrieve and multiply 4 coefs.

...

p(neq1) = p(neq1) + ap1

p(neq2) = p(neq2) + ap2

end do

STORAGE REQUIREMENTS:

For 4 degrees of freedom:

Elements: (nel x 192 coefs.) + BDiag

Edges: (nedges x 32 coefs) + BDiag



Further Improvements n EDS Matvec
Product

� Gijzen Modified:

1
( ) ( )

nedges

s s s

s=
 = + − Ap B A p A B A pA
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� Note that this modification imply in storing just 

off-diagonal edge coefficients, which are global 

coefficients;

� B stores the nodal-block diagonals, which 

are global



Reordering Graph in Unstructured 
Grid Computations 

� Improve cache utilization 

� Minimize data movement in memory hierarchy

� Improve data locality

40

� Minimize indirect addressing effects

� Reorder nodes and edges

� Maximize processor performance

Coutinho, Martins, Sydenstricker, Elias. Performance comparison of data reordering algorithms for 
sparse matrix-vector multiplication in edge-based unstructured grid computations, IJNME, 2006.



Data Locality Effects in EDS Matvec Product

Original mesh ordering

Edge reordering only



Data Locality Effects in EDS Matvec Product

Node reordering only

Edge and node reordering



EdgePack©

� Overview
– Parallel data reordering package for optimizing edge-based 

computations in unstructured grids

– Develop an automatic procedure to determine which data 
combination for a given computer platform is the best one in 
terms of processing time

– Build a matrix-vector product routine library for symmetric 
and non-symmetric matrices for tetrahedral and hexahedral and non-symmetric matrices for tetrahedral and hexahedral 
elements based on nodal renumbering and edge renumbering 
algorithms

– Support user on quickly developing finite element codes 
portable on parallel (shared, distributed or both) and multi-
core platforms

– See:
– Marcos Martins, Renato Elias, Alvaro Coutinho, EdgePack: A Parallel 

Vertex and Node Reordering Package for Optimizing Edge-Based 
Computations in Unstructured Grids, LNCS, 4395: 292-304, 2007



EdgePack©

� Structure
– EdgePackPre

• Performs nodal and edge orderings according to the number of 
degrees of freedom per node

• Data locality and reuse
• Data prepared for serial or parallel processing (shared or distributed 

memory platform)
• Mesh partition for parallel processing

– Probe– Probe
• Determines the best data configuration experimentally out of 

hundreds of options for current platform by sampling the time spent 
for matrix-vector products and element matrix disassembling into 
edges

• Results used to mesh weighting

– EdgePackPro
• Library of routines built in Fortran90 for implementation of finite 

element code based on edges
• Based on MPI and OpenMP directives



EdgePack - EdgeTRM

� Transient thermal conduction through a sedimentary basin 
(South America)

– Linear and symmetric operator

– 1 degree of freedom per node

– Mesh
• 26,253 Nodes and• 26,253 Nodes and

141,766 Elements

– Computational platforms
• Xeon 1.7 GHz, 4 GB RAM

• Pentium 4 2.8 GHz HT, 2 GB RAM

• Intel Core 2 Duo 2.2 GHz, 2 GB RAM

• AMD Athlon 64X2 Dual Core 4200+ 2.2 GHz, 2 GB RAM

• Dual Core AMD Opteron 2.2 GHz, 16 GB RAM

45



EdgePack - EdgeTRM

� Transient thermal conduction through a sedimentary basin

– Data probing results:  rank 0
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EdgePack - EdgeCSM

� Elasto-plastic behavior of a sedimentary basin (South 

America)

– Non-linear and symmetric operator

– 3 DOF per node

– Mesh

• 28,814 Nodes and

136,738 Elements

– Computational platforms

• Xeon 1.7 GHz, 4 GB RAM

• Pentium 4 2.8 GHz HT, 2 GB RAM

• Intel Core 2 Duo 2.2 GHz, 2 GB RAM

• AMD Athlon 64X2 Dual Core 4200+ 2.2 GHz, 2 GB RAM



EdgePack - EdgeCSM

� Elasto-plastic behavior of a sedimentary basin

– Data probing results
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PART II: LET’S GO 
PARALLEL



Parallelizing computational mechanics 
codes

� Basic concerns:

– What to parallelize?

– What parallel model to adopt?

– What the implications of the chosen parallel model?

• Which architecture the program will run?

• What data structures?

• What about efficiency? What about scaling?

• Is it easy to implement and maintain?

– Should I adapt an existing code or better from the scratch?

� Hands-on!

– Where do I begin?

– How am I sure that I’m getting the right answers?



What have to be parallelized?

� Rule of thumb: the same code should run in serial and parallel 

mode! “... A serial program is just a parallel program running 

in 1 processor, process, task, thread ...”

� We should consider:

– All the program will be parallel or just some parts?– All the program will be parallel or just some parts?

– What parts deserve to be parallel? “... consider  computational 

effort and amount of data ...”

– Do the selected algorithms and methods can be efficient 

parallelized?

– Reads and writes are parallel?

– KISS programming approach



What parallel model ?

� Threaded parallelism /OpenMP: =

– “Easy” to implement, low scalability, problems with memory 

dependences 

� Distributed memory – MPI:� Distributed memory – MPI:

– “Hard” to implement; high scalability, data should be partitioned 

among processors, load balacing maybe problematic.

� Hybrid: MPI+OpenMP

– Difficult to implement, flexible, memory dependences and 

partitioning should be taken care



Adapt an existing code or better from the 
scratch?

� That depends:

– What is the program size?

– How complex is the code? “... codes that  most of computational effort are on few sections 

(routines, objects) may benefit from parallelism by small strategic interventions without 

drastic modifications ...”

– Is the program documented?

– Is the documentation really good?

– Conversion will be done by the same programmer of the original serial code?– Conversion will be done by the same programmer of the original serial code?

� Consider:

– Is it really worth begin from the scratch?! “... sometimes adaption takes longer than 

recriation ...”

– Start from the scratch adding components from the old code;

– Start from the scratch with new technologies;

� Parallelism is a strong factor to be considered in the design of new software. “... 

Even though the 1st version is serial, the programmer should be well aware that 

most probably this have to be done in the future and provide enabling 

mechanisms  to support the migration...”



Where to start?

� Consider again the major components of our FE code

Pre-processing

Input data

Time integration loop

Nonlinear iteration loop 

Form system of linear equations

Jacobian, residual 

Form system of linear equations

Solve system of linear equations

End NL loop

Update time step

Output results

End time loop

Post-processing

Visualization

Matvec, preconditioning 



Where to start?

� What all FE problems generally do?

– We evaluate integrals to generate stiffness matrices and residuals; that 

depends basically on what element and how many we have;

– The inner part of this program usually solves a linear system of equations; 

with iterative methods that means matvecs and preconditioning;

– System solves are repeated many times

• CONCLUSION: real gains can be obtained accelerating system generation and • CONCLUSION: real gains can be obtained accelerating system generation and 

solution and/or rducing how many times it is solved

– Computational effort is directly related to:

• Solver algorithm

• Discretization  � number of unknowns, elements or edges

• Underlying physics � number of degrees of freedom per node

• Conditioning of linear system of equations

• Other factors � data locality for instance

that is, we found some points to explore! 



Some ways to think about parallelism
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� In the first example several functions (tasks) run at the same time; if the function 

is the whole FE code, we have what is called now Many Task Computing parallel 

model. 

� In the second example we are limited by the number of degrees-of-freedom

� In the third example we assign a part of the domain to each processor and the FE 

code runs on every part. However interface data have to be updated



OpenMP in FE codes

� OpenMP can be easily adopted by any existing FE code, 

once all memory dependencies problems are removed 

from the code;

� Any loop with no memory dependencies can be � Any loop with no memory dependencies can be 

parallelized with OpenMP;

� It’s better to insert OpenMP directives incrementally, 

starting from the most computationally intense loop 

and checking efficiency and results after each 

intervention;



Memory Dependency in OpenMP

� Consider the following element loop executed in 2 parallel threads:

C$OMP PARALLEL DO
do i=1,nel

! Recover element nodes
x(no) = x(no) + a

enddo
C$OMP END PARALLEL DOC$OMP END PARALLEL DO

� In the above loop the 2 threads are COMPETING to modify the contents 

of x for node 3 since each thread is working in its element and its data. 

� CONCLUSION: In the above loop threads cannot share information 

related to node 3



Solving memory dependence in 
unstructured grids

� To solve the memory dependence problem in unstructured grids we just have to 

split the elements in the mesh in blocks that do not share any node. 

� This procedure is known as mesh coloring or mesh 

blocking.

ielm = 0
do icor = 1, ncores

nvec = ielblk(icor)
C$OMP  PARALLEL DO
C$OMP& FIRSTPRIVATE(NVEC)

do i = ielm+1, ielm+nvec
! Recover element nodes
x(no) = x(no) + a

enddo
C$OMP END PARALLEL DO

ielm = ielm+nvec
enddo

� Mesh coloring affects node reordering

� We use a greedy algorithm to color the 
mesh;



EBE/EDS Matvec with OpenMP

� Exemple: EDS with 1 degree of freedom

iside = 0   
DO iblk = 1, nedblk
nvec  = iedblk(iblk)
!DIR$ IVDEP
!$OMP PARALLEL DO

DO ka = iside+1, iside+nvec, 1   
In some compilers tells that 
the code below have no DO ka = iside+1, iside+nvec, 1   

neq1 = lm(1,ka)
neq2 = lm(2,ka)
...
! retrieve and multiply 4 coefs.
...
p(neq1) = p(neq1) + ap
p(neq2) = p(neq2) + ap

ENDDO
!$OMP END PARALLEL DO
iside = iside + nvec
ENDDO

the code below have no 
memory dependencies



CSR matvec with OpenMP

!$OMP PARALLEL DO

DO i = 1, n

k1 = ia(i)

k2 = ia(i+1)-1

y(i) = dotproduct(a(k1:k2),x(ja(k1:k2)))

ENDDO

!$OMP END PARALLEL DO
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Parallelism in Distributed Memory 
Machines

Message Passing InterfaceMessage Passing Interface



Generalities

� Easy to understand � hard to implement

� Although designed for distributed memory systems, also works on 

shared memory machines, making the approach very flexible and 

portable;

� Basicaaly convert a big problem into several small ones and assign 

each small problem to a processor (process);

Many identical copies of the same program are executed � Many identical copies of the same program are executed 

simultaneously;

� Every copy acts independently only in its part of the problem;

� Common parts are synchronized by message passing operations 

using routines available  in MPI;

� Thus we need to take care of explicit coding of information exchanging 

among several processes using MPI functions (MPI_BROADCAST, 

MPI_SEND, MPI_ALLREDUCE, ...)



What and how?

� The most intuitive way of applying MPI to computational mechanics is by 

partitioning the problem domain into subdomains. 

Conclusion: we need to learn how to partition a given problem



Mesh (and graph) Partitioning

� Consider the mesh below and its associated graphs and sparse matrix

Mesh

Nodal graph

Dual graph

matrix



Dual Partition (or by element)

Mesh
Dual graph

Partitioned mesh

Note that nodes 3 and 4 belong to both sub-mesh simultaneously, that is, these nodes belong to 
the interface between the 2 partitions;

In practice we need to keep interface information compatible (equal or sincronized)

Conclusion: Communication volume (that is, the amount of information sent/received) is 
directly proportional to the number of interface nodes

Note that nodes 3 and 4 belong to both sub-mesh simultaneously, that is, these nodes belong to 
the interface between the 2 partitions;

In practice we need to keep interface information compatible (equal or sincronized)

Conclusion: Communication volume (that is, the amount of information sent/received) is 
directly proportional to the number of interface nodes



Nodal Partition

� Alternatively, we can partition the nodal graph. In 

practice the choice depends on the undelying data 

structures (element based/node based)

Mesh Nodal graph



Important Aspects on Mesh Partitioning

� A good partitioning should:

– Minimize communication volume while maintaining load 

balancing;

• Minimize communication volume means minimize the number 

of edge cuts in the graph (nodal or dual) ;of edge cuts in the graph (nodal or dual) ;

• Balancing load means distribute uniformly the number of 

vertices  in each partition;

– NOTE: in heterogeneous systems, with different machines, 

partition should take this into account, generally by 

assigning different weights to the graph vertices.



Partititioning Quality

HIGH communication

Load BALANCED

LOW communication

LOW communication

Load BALANCED

LOW communication

Load (UN)BALANCED

Good or bad?! Depends on the system...

Pentium 4 Nehalem

Nehalem Nehalem



Partitioning in practice

10,264,863 elements
1,858,246 nodes

How can I partition this mesh?

Where to start?



Software for mesh 
partitioning

� Chaco

– http://www.cs.sandia.gov/~bahendr/chaco.

html

� Jostle

– http://staffweb.cms.gre.ac.uk/~c.walshaw/j

ostle/

� Metis/ParMetis

– http://glaros.dtc.umn.edu/gkhome/views/m– http://glaros.dtc.umn.edu/gkhome/views/m

etis/index.html

� PARTY

– http://wwwcs.uni-

paderborn.de/fachbereich/AG/monien/RESE

ARCH/PART/party.html

� Scotch

– http://www.labri.fr/perso/pelegrin/scotch/

� S-Harp



Comparing 
algorithims 
for mesh 
partition



Comparing partitioning software

Metis Jostle Party/DB

Metis Jostle Party/DB

Metis Jostle Party/DB



Metis

� What is Metis?

• Graph and mesh partitioner;

• It has algorithms for bandwidth reduction;

• Extremely fast;

• Partitions are  balanced or not (weighted partitioning);• Partitions are  balanced or not (weighted partitioning);

• Based on methods that minimize the number of edge cuts;

• Written in C with Fortran interface;

• Parallel version available (ParMetis);

• Free and open software.

• Further info: http://www-users.cs.umn.edu/~karypis/metis/

• Can be used as stand-alone or library



Graph Partitioning for Distributed Memory Machines

METIS: http://www-users.cs.umn.edu/~karypis/metis/index.html



Mesh Partitioned!

METIS



Components of Metis Library

� Graph partitioning:

– METIS_PartGraphRecursive;

– METIS_PartGraphKway;

– METIS_PartGraphVKway;

– METIS_mCPartGraphRecursive;

– METIS_mCPartGraphKway;

� Sparse matrices reordering

– METIS_EdgeND;

– METIS_NodeND;

– METIS_NodeWND

– METIS_WPartGraphRecursive;

– METIS_WPartGraphKway;

– METIS_WPartGraphVKway;

� Mesh partitioning:

– METIS_PartMeshNodal;

– METIS_PartMeshDual;

� Auxiliary routines:

– METIS_MeshToNodal;

– METIS_MeshToDual;

– METIS_EstimateMemory.



Using Metis
(where to start?)

� Download files in: 

– http://glaros.dtc.umn.edu/gkhome/metis/metis/download

Metis-4.0.tar.gz 
(source code)

Metis-4.0.zip 
(precompiled for Win32) (source code)(precompiled for Win32)



Using Metis in stand-alone mode
(Practical example)

10  2
1   2   6   3  
1   8   4   3  
1   5   8   6  
3   1   8   6  
8   6   7   3  
5   6   9   8  
8   6  11   7  
6  10   9  11  

arq.msh

6  10   9  11  
8   9  11   6  
8  11   9  12 

C:\partdmesh.exe arq.msh 2

0
0
1
0
0
1
0
1
1
1

0
0
0
0
1
0
0
1
1
1
1
1

arq.msh.epart.2 arq.msh.npart.2



Metis with FORTRAN
(using the library)

file libmetis.a

Link your program with the library

ifort –o <meuprog> *.o libmetis.a



FAQ (Frequently Asked Questions)

� Does Metis partition hybrid meshes (more than one 

element type)?

– Yes and no: Metis partitions GRAPHS, that is, Metis will 

partition every mesh converted to either a nodal or dual 

graph.

– OBS.: Metis parallel version, ParMetis, has native support 

for hybrid mesh partitioning.

� How do I discover the interface nodes?

– Metis does not return explicitly this information. However, 

it’s very simple to obtain. Every time a node is in a 

partition with number different from its element means that 

is an interface node.



Metis: Discovering interface nodes

1    1    2    6    3    0  
2    1    8    4    3    0  
3    1    5    8    6    1  
4    3    1    8    6    0  
5    8    6    7    3    0  
6    5    6    9    8    1  

1     0
2     0
3     0
4     0
5     1
6     0
7     0

nó1 nó2 nó3 nó4 partie nó part

6    5    6    9    8    1  
7    8    6   11    7    0  
8    6   10    9   11    1  
9    8    9   11    6    1  
10   8   11    9   12    1

7     0
8     1
9     1
10    1
11    1
12    1

Note that node 1 belongs to partition 0 and belongs to element 3, that 
belongs to partition 1, that is, node 1 is an interface node!



Beyond partitioning

� After mesh partitioning the original problem is now divided 

into several smaller sub-problems, connected by the interface 

nodes;

� A good practice is to independently number every mesh entity 

(nodes, elements, edges) in each partition; 

There is several ways of performing this ordering. This is the � There is several ways of performing this ordering. This is the 

simplest!

� Note that interface data will be replicated in each partition;

� We will see briefly later another way, much more complicated.



Reordering the partitions

After this reordering we can treat each partition as s completely independent problem and update interface data 
just when needed. 



Interface Treatment

� What is better? 

– Exchange few big messages or a lot of small ones? 



Thinking in parallel

� MPI programs normally have a master process: rank 0

– rank 0 normally controls main program flow

– rank 0 must also be used to compute – “don’t waste 

resources!!!”

� MPI programs should also work in serial mode (1 � MPI programs should also work in serial mode (1 

processor)

� Results from a parallel run should match the serial run 

results

� IMPORTANT TIP: Utilize pre-processing macros for 

producing 100% serial versions of your code (we you 

see examples)



Building MPI programs

� Who does what?

� Who reads data? 

� Every process reads its own or rank 0 reads and send to 

all others?

� What should be communicated/synchronized?� What should be communicated/synchronized?

� When I need to communicate/synchronize processes?

� Who will output to the screen?

� Who and how will output be written?

� Output files have to be concatened?

� “... Debbuging MPI programs is very trick, we must write on 

the screen carefully ...”



program foo

#ifdef MPICODE

include 'mpif.h'

character *60 message

dimension :: istatus(MPI_STATUS_SIZE)

#endif

integer ::  nprocs, myrank

irank=0; nprocs=1

#ifdef MPICODE

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

program foo

integer :: nprocs, myrank

irank=0; nprocs=1

if (myrank.eq.0) then

! faça algo

endif

stop

end program

program foo

include 'mpif.h'

character *60 message

dimension :: istatus(MPI_STATUS_SIZE)

Original source code

ifort –c –fpp foo.f90

ifort –c –fpp MPICODE foo.f90

Serial code

Assuring portability

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

#endif

if (myrank.eq.0) then

! Inicie algo

#ifdef MPICODE

else 

! Termine algo iniciado no rank 0

#endif

endif

#ifdef MPICODE

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call MPI_FINALIZE(ierr)

#endif

stop

end program

dimension :: istatus(MPI_STATUS_SIZE)

integer ::  nprocs, myrank

irank=0; nprocs=1

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

if (myrank.eq.0) then

! Inicie algo

else 

! Termine algo iniciado no rank 0

endif

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call MPI_FINALIZE(ierr)

stop

end program

Parallel code



Scalar product in MPI
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Algorithm for parallel dot product

function pddot(n,nit,dx,dy)
use mpidefs
! n= #internal values, nit=#interface values
integer :: n, nit, ddot1, ddot2, drec, pddot
real*8 :: dx(1), dy(1)

#ifdef MPICODE
if (nprocs.ne.1) then

ddot1 = ddot(  n,dx(  1),1,dy(  1),1) ! BLAS ddot localddot1 = ddot(  n,dx(  1),1,dy(  1),1) ! BLAS ddot local
ddot2 = ddot(nit,dx(n+1),1,dy(n+1),1) ! BLAS ddot interface
CALL MPI_ALLREDUCE( ddot1, drec, 1, MPI_DOUBLE_PRECISION , &

MPI_SUM, MPI_COMM_WORLD, ierr )
pddot = drec + ddot2                  ! global ddot

else
#endif

pddot = ddot(n,dx(1),1,dy(1),1)
#ifdef MPICODE
endif
#endif
end function



MPI Matrix-vector product

Global Matvec

MPI MatvecMPI Matvec



MPI EDS Matrix-Vector Product

do ie = 1, nedges

neq1 = lm(1,ie)

neq2 = lm(2,ie)

...

retrieve and multiply 4 coeffs.

......

p(neq1) = p(neq1) + ap

p(neq2) = p(neq2) + ap

enddo

#ifdef MPICODE

! Adding interface contributions

call MPI_AllReduce

#endif



Hybrid parallelism

� How do we work with data partitioning and memory dependency?

Mesh partitioning (Metis) 

Distributed memory (MPI)

Data partitioning + Mesh 
coloring

Mesh coloring 

Threaded parallelism (OpenMP)



Hybrid matrix-vector product 
(OpenMP+MPI)

iside = 0      

DO iblk = 1, nedblk

nvec  = ia_edblk(iblk)

!dir$ ivdep

!$OMP PARALLEL DO

DO ka = iside+1, iside+nvec, 1   

Element-by-Element Edge-by-Edge

...MATVEC computations...

ENDDO

!$OMP END PARALLEL DO

ENDDO

...over interface nodes...

#ifdef MPICODE

call MPI_AllReduce

#endif



Other important operations

� Every other operation involving assembling of 

nodal values should be treated (scatter and add) 

similarly

� Example operations:

– Residual vector assembly;

– Nodal block-diagonal preconitioners.



Nodal Block-Diagonal Preconditioning

� Nodal block-diagonals are naturally computed when integrating 

element matrices and can be used as serial or parallel preconditioners

� The nodal block-diagonal matrix has the following structure :

W =

Ax = b

-1 -1W Ax = W b

96

� In practice nodal block-diagonals (generally with dimensions ngl x ngl ) 

are inverted block-by-block and multiplied by RHS vector at the 

beggining of the iterative method;

� During iterations, after computing matvec we apply the preconditioner.

-1 -1W Ax = W b



MPI Nodal-Block Diagonal

subroutine LinearSolution (A, W, x, b)

! Solve W -1 A x = W -1 b

#ifdef MPICODE

! Globalize interface blocks

#endif

do i =1,nblocosdo i =1,nblocos

! invert W i

enddo

! Multiply W-1 b

call GMRES(A, W, x, b)

! Matvec z ���� A x

! Multiply W-1 z

end solution



MPI Collective Communications



P2P Subdomain Communication

 

Master-Slave subdomain relationship

 
(a) Mesh Partition (b) Communication Graph 

 
Exchange information between neighboring processors implemented 
in two stages: 
(i) slaves processes send their information to be operated by masters 
(ii) solution values are copied from masters to slaves. 

EdgeCFD uses non-blocking send and receive MPI primitives

See also: Karanam, Jansen, Whiting, Geometry based pre-processor for parallel 
fluid dynamic  simulations using a hierarchical basis, Engineering with Computers (2008)



SOME EXAMPLES



Flow around a Los Angeles Class Submarine

METIS partition
16 procs

504,947 tetrahedral elements, 
998,420 edges and 92,564 nodes

Renato N. Elias, Marcos A. D. Martins, Alvaro L. G. A. Coutinho: Parallel Edge-Based Inexact Newton 
Solution of Steady Incompressible 3D Navier-Stokes Equations. Euro-Par 2005: 1237-1245



Inexact Newton Behavior
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Parallel Performance
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(Left) Message passing performance in SGI Altix and Cray XD1 – edge-based data structure, 
(Right) Data structure comparisons on SGI Altix (MPI).



Bingham Flow in a Lid Driven Cavity

PROBLEM SIZES

31x31x31 51x51x51 71x71x71 101x101x101

Tetrahedra 148,955 663,255 1,789,555 5,151,505

Edges 187,488 819,468 2,193,048 6,273,918

Nodes 32,768 140,608 373,248 1,061,208

Equations 117,367 525,556 1,421,776 4,101,106

Rigid zonesVortex eye

104

R. N. Elias, M. A. D. Martins, A. L. G. A. Coutinho, Parallel edge-based solution of viscoplastic flows 
with the SUPG/PSPG formulation, Comput. Mech. (2006) 38: 365–381



Validation
(Reynolds = 1, and Bingham numbers                 = 2 and 5)

Viscosity/Streamlines

This work using a linear 

tetrahedra 

mesh 51x51x51

YhBn
u

σ
µ

=

Yielded/unyielded zones

Mitsoulis and Zisis using a 

biquadratic quadrilateral 

mesh 40x40

Mitsoulis, E. and Zisis, Th., Flow of Bingham Plastics in a Lid-Driven Square Cavity, J. Non-Newtonian Fluid Mech., 2001 (101):173-180



Result Comparisons
(Reynolds = 1000)

Vola et alThis work

0.60

0.70

0.80

0.90

1.00

V
o
r
te
x
 C
e
n
te
r
 P
o
s
it
io
n

Present Work x

Present Work y

Vola x

Vola y

σy=10 Pa

Vola et al

(mesh 80x80)

This work

(mesh 51x51x51)

Vola, D., Boscardin, L. and Latché, J. C., 
Laminar Unsteady Flows of Bingham 

Fluids: a Numerical Strategy and Some 
Benchmark Results, J. Comput. Phys., 2003 

(187):441-456

0.50

0.1 1 10 100

Plasticity Threshold (Pa)

σσσσy=1 Pa σσσσy=5 Pa σσσσy=20 Pa

( )
0

0

0

Y Y

r

Y
r

r

if

if

µ γ
γ µ µ

µ γ
µ γ

µ µ

 + > −= 
 ≤
 −

σ σσ σσ σσ σ

σσσσ

ɺ
ɺ

ɺ

ɺ



Data Structure and Parallel Performance
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Parallel Performance
(Leaky Lid Driven Cavity Flow on SGI Altix)
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Performance on Current Processors



Test Systems

Altix-ICE Cluster Dell Nehalem server Ranger

Processor Intel Xeon X5355 Intel Xeon E5450 Intel Xeon X5560 (i7) AMD Opteron 8354

Codename Clovertown Harpertown Nehalem

Launch date 2006 2007 2009 2007

Clock speed 2.66 GHz 3.00 GHz 2.8 GHz 2.2 GHz

Number of nodes 32 16 1 3,936

Sockets per node 2 2 2 4

Cores per socket 4 4 4 4

Table 1. Systems summary

L1 cache 32 KB
(no sharing)

32 KB
(no sharing)

32 KB
(no sharing)

64 KB
(no sharing)

L2 cache 4 MB
(0,2)(4,6)

6 MB
(0,4)(2,6)

256 KB
(no sharing)

512 KB
(no sharing)

L3 cache   8 MB
(0,1,2,3)

2 MB
(shared)

Operating system SUSE 10 sp2 Red Hat Advanced Server 
5.3

CentOS 5.3 CentOS 4.5

Compiler Intel Fortran 10.1 Intel Fortran 11.1 Intel Fortran 11.1 Intel Fortran 10.1

Compiler flags -fast -fast -fast -fast



Parallel models speedup per processor 
(intra-node)

(a) SGI Altix-ICE (Clovertown) (b) Nehalem server (Nehalem / i7)

All tests in MSH1
which is relatively small for a large number of cores



Processor performance

(a) CPU (serial run) (b) System (8 cores, 1 node) 
 



Effects of Process Placement

 
(a) 

 
(b) 

Figure 1. Performance impact according to cores x nodes distribution on Cluster Dell 

 Similar results can be found in: Jeff Diamond, Byoung-Do Kim, Martin Burtscher, Steve Keckler, Keshav

Pingali and Jim Browne, Multicore Optimization for Ranger,TeraGrid09, http://www.teragrid.org/tg09/



Rayleigh-Benard 4:1:1 -
501×125×125  mesh

Elements..............:  39,140,625
Nodes.................:   7,969,752
Edges.................:  43,833,636
Flow equations........:  31,879,008
Temperature equations.:   7,642,824

Time steps............:       2,954

Mesh generation: SGI Altix 450 128GB RAM
Solver: SGI Altix ICE 8200, 128 cores, Cluster Dell 64 cores, MPI-P2P



P2P Communication Graph
SGI Altix ICE 8200, 128 cores

 

 Arrows indicate communication direction in sending operations. 
Communication is reversed in receiving

Graph visualization tool: Nodes3D, http://brainmaps.org/index.php?p=desktop-apps-nodes3d



TAU Parallel ProfilingTAU Parallel Profiling

SGI Altix ICE 8200, 128 cores



Cluster Dell, 64 cores, process placement

Time spent in 10 time steps

Communication graph



What we have learned from the applications

� HPC can transform engineering and 
science

� Porting a code is not the issue: 
performance needs code reformulation 
and new data structures

� Focus is not the hardware: we need stable 
and effective programming models, 
scaling upwards
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and effective programming models, 
scaling upwards



Wireless Cluster Experiment

� mini-cluster formed by 4 laptops 

and a wireless/fast-ethernet 

network

� 2 Intel Centrino 1.6 GHz/512Mb, 

1 Intel Centrino 1.3 GHz /512Mb 

119

1 Intel Centrino 1.3 GHz /512Mb 

and 1 Intel Pentium 4 2.4 

GHz/512Mb 

� Interconnection: Linksys 

Wireless-B Hub, IEEE 

802.11b/2.4GHz/11Mbps or 

Fast-Ethernet 10/100Mbps 

network



Wireless Cluster Experiment

2
3
1
4
.
9
1

1250.00

1500.00

1750.00

2000.00

2250.00

2500.00

2750.00

3000.00

T
im

e
 (

se
c)

WIRELESS

FAST-ETHERNET

120

3
9
8
.
6
6

5
2
3
.
0
2

3
9
8
.
6
6

1
7
8
.
6
9

1
5
4
.
5
2

0.00

250.00

500.00

750.00

1000.00

1250.00

1 2 4

Numbe r of Cluste r Node s
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(Right) Performance comparison between wireless and fast-ethernet networks.



Some comments

� Older Intel Xeon processors dramatically suffer when large workloads are 

imposed to a single node;

� Processor placement has great influence in older Xeon based systems;

� Nehalem (Core I7) has several improvements over its predecessors;

� Third level shared cache (now we have a true quad core...);

Fast interconnect channel among processors (well, sounds like AMD Hyper � Fast interconnect channel among processors (well, sounds like AMD Hyper 

Transport...).

� Point-to-Pont MPI model is the best strategy to reach good parallel 

performance;

� OpenMP performance is still poor, but it's getting better (for the same 

implementation!);

� Many-core and GPU paradigms are bringing back threaded parallelism...



More reading on recent stuff

� B. Wylie, M. Geimer, M. Nicolai and M. Probst, Performance Analysis and

Tuning of the XNS CFD Solver on BlueGene/L, in Lecture Notes in Computer

Science Vol. 4757, Proceedings of the 14th EuroPVM/MPI Conference, 

Springer (2007) 107–116

� G. Houzeaux, M. Vázquez, R. Aubry, J.M. Cela, A massively parallel fractional 

step solver for incompressible flows, Journal of Computational Physics 228 step solver for incompressible flows, Journal of Computational Physics 228 

(2009) 6316–6332

� O. Sahni, M. Zhou, M. S. Shephard, K. E. Jansen, Scalable Implicit Finite 

Element Solver for Massively Parallel Processing with Demonstration to 160K 

cores, Supercomputing 2009

� S. Turek, D. Göddeke, C. Becker, S. H.M. Buijssen and H. Wobker, FEAST -

Realisation of Hardware-oriented Numerics for HPC Simulations with Finite 

Elements, accepted for publication in Concurrency and Computation, Special 

Issue Proceedings of ISC'08, Dec. 2009



Final Remarks

� Computational Engineering and Science changed 

the way we view engineering

� There is no general approach

� Integrated approach: HPC, Visualization, Storage 

and Communications

� Challenges: 

– Managing complexity: programming models, data structures 

and computer architecture � performance

– Understanding the results of a computation: visualization, 

data integration, knowledge extraction

– Collaboration: grid, web, data security
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